Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Polymeric core-crosslinked particles prepared via a nanoemulsion-mediated process: from particle design and structural characterization to in vivo behavior in chemotherapy

Abstract

Various polymeric nanoparticles have been used as drug carriers in drug delivery systems (DDSs). Most of them were constructed from dynamic self-assembly systems formed via hydrophobic interactions and from structures that are unstable in an in vivo environment owing to their relatively weak formation forces. As a solution to this issue, physically stabilized core-crosslinked particles (CP) with chemically crosslinked cores have received attention as alternatives to the dynamic nanoparticles. This focused review summarizes recent advances in the construction, structural characterization, and in vivo behavior of polymeric CPs. First, we introduce a nanoemulsion-mediated method to create polyethylene glycol (PEG)-bearing CPs and their structural characterization. The relationship between the PEG chain conformations in the particle shell and the in vivo fate of the CPs is also discussed. After that, the development and advantages of zwitterionic amino acid-based polymer (ZAP)-bearing CPs are presented to address the poor penetration and the internalization of PEG-based CPs into tumor tissues and cells, respectively. Finally, we conclude and discuss prospects for application of polymeric CPs in the DDS field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. van Rijt SH, Sadler PJ. Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today. 2009;14:1089–97. https://doi.org/10.1016/j.drudis.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925 https://doi.org/10.1016/j.bioorg.2019.102925

    Article  CAS  PubMed  Google Scholar 

  3. Heishima K, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, et al. Petasin potently inhibits mitochondrial complex I–based metabolism that supports tumor growth and metastasis. J Clin Investig. 2021;131:e139933 https://doi.org/10.1172/JCI139933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16:3267–85. https://doi.org/10.2174/092986709788803312.

    Article  CAS  PubMed  Google Scholar 

  5. Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Delivery Sci Technol. 2020;56:101549 https://doi.org/10.1016/j.jddst.2020.101549

    Article  CAS  Google Scholar 

  6. Lee JS, Feijen J. Polymersomes for drug delivery: Design, formation and characterization. J Contr Release. 2012;161:473–83. https://doi.org/10.1016/j.jconrel.2011.10.005

    Article  CAS  Google Scholar 

  7. Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. Nanoscale Horizons. 2021;6:78–94. https://doi.org/10.1039/D0NH00605J

    Article  CAS  PubMed  Google Scholar 

  8. Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Contr Release. 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031

    Article  CAS  Google Scholar 

  9. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Delivery Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009

    Article  CAS  Google Scholar 

  10. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharmacy Pharmacol. 2012;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x. (acccessed 1/20/2023)

    Article  CAS  Google Scholar 

  11. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv Drug Delivery Rev. 2012;64:37–48. https://doi.org/10.1016/j.addr.2012.09.013

    Article  Google Scholar 

  12. Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles. Acc Chem Res. 2011;44:1039–49. https://doi.org/10.1021/ar200036k

    Article  CAS  PubMed  Google Scholar 

  13. Nishimura T, Akiyoshi K. Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. Adv Sci. 2018;5:1800801 https://doi.org/10.1002/advs.201800801

    Article  CAS  Google Scholar 

  14. Yue J, Liu S, Xie Z, Xing Y, Jing X. Size-dependent biodistribution and antitumor efficacy of polymer micelle drug delivery systems. J Mater Chem B. 2013;1:4273–80. https://doi.org/10.1039/C3TB20296H

    Article  CAS  PubMed  Google Scholar 

  15. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  16. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release. 2000;65:271–84. https://doi.org/10.1016/S0168-3659(99)00248-5

    Article  CAS  Google Scholar 

  17. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23. https://doi.org/10.1038/nnano.2011.166

    Article  CAS  PubMed  Google Scholar 

  18. Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into solid tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2

    Article  CAS  PubMed  Google Scholar 

  19. Kingston BR, Lin ZP, Ouyang B, MacMillan P, Ngai J, Syed AM, et al. Specific Endothelial Cells Govern Nanoparticle Entry into Solid Tumors. ACS Nano. 2021;15:14080–94. https://doi.org/10.1021/acsnano.1c04510

    Article  CAS  PubMed  Google Scholar 

  20. Matsumura Y. Preclinical and clinical studies of NK012, an SN-38-incorporating polymeric micelles, which is designed based on EPR effect. Adv Drug Delivery Rev. 2011;63:184–92. https://doi.org/10.1016/j.addr.2010.05.008

    Article  CAS  Google Scholar 

  21. Maeda H. The 35th Anniversary of the Discovery of EPR Effect: A New Wave of Nanomedicines for Tumor-Targeted Drug Delivery—Personal Remarks and Future Prospects. J Personalized Med. 2021;11:229.

    Article  Google Scholar 

  22. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Exp Opin Drug Delivery. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485

    Article  CAS  Google Scholar 

  24. Matsumura Y. 35 years of discussions with Prof. Maeda on the EPR effect and future directions. J Controlled Release. 2022;348:966–9. https://doi.org/10.1016/j.jconrel.2022.06.035

    Article  CAS  Google Scholar 

  25. Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, et al. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Delivery Rev. 2022;180:114079 https://doi.org/10.1016/j.addr.2021.114079

    Article  CAS  Google Scholar 

  26. Fujii S, Sakuragi M, Sakurai K. Characterizing PEG. Chains Tethered onto Micelles and Liposomes Applied as Drug Delivery Vehicles Using Scattering Techniques. Control of Amphiphile Self-Assembling at the Molecular Level: Supra-Molecular Assemblies with Tuned Physicochemical Properties for Delivery Applications, ACS Symposium Series. 1271. American Chemical Society; 2017. p. 115–29. https://doi.org/10.1021/bk-2017-1271.ch005.

  27. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. https://doi.org/10.1038/nrd1632

    Article  CAS  PubMed  Google Scholar 

  28. Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Allergenic components of the mRNA-1273 vaccine for COVID-19: Possible involvement of polyethylene glycol and IgG-mediated complement activation. Allergy. 2021;76:3307–13. https://doi.org/10.1111/all.14794

    Article  CAS  PubMed  Google Scholar 

  29. Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour delivery. Nat Mater. 2020;19:1362–71. https://doi.org/10.1038/s41563-020-0755-z

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharma Biopharma. 2007;65:309–19. https://doi.org/10.1016/j.ejpb.2006.11.010

    Article  CAS  Google Scholar 

  31. Ebrahim Attia AB, Yang C, Tan JPK, Gao S, Williams DF, Hedrick JL, et al. The effect of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials. 2013;34:3132–40. https://doi.org/10.1016/j.biomaterials.2013.01.042

    Article  CAS  Google Scholar 

  32. Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent Developments in Nanomaterial-Based Shear-Sensitive Drug Delivery Systems. Adv Healthcare Mater. 2021;10:2002196 https://doi.org/10.1002/adhm.202002196

    Article  CAS  Google Scholar 

  33. Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7:53–65. https://doi.org/10.1016/j.nantod.2012.01.002

    Article  CAS  Google Scholar 

  34. Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, et al. Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip. ACS Appl Bio Mater. 2021;4:669–81. https://doi.org/10.1021/acsabm.0c01209

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Wang G, Zhang H, Hu S, Liu X, Tang J, et al. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS Nano. 2018;12:6179–92. https://doi.org/10.1021/acsnano.8b02830

    Article  CAS  PubMed  Google Scholar 

  36. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35:1068–83. https://doi.org/10.1039/B514858H

    Article  PubMed  Google Scholar 

  37. Liao C, Chen Y, Yao Y, Zhang S, Gu Z, Yu X. Cross-Linked Small-Molecule Micelle-Based Drug Delivery System: Concept, Synthesis, and Biological Evaluation. Chem Mater. 2016;28:7757–64. https://doi.org/10.1021/acs.chemmater.6b02965

    Article  CAS  Google Scholar 

  38. Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-Cross-Linked Nanoparticles Reduce Neuroinflammation and Improve Outcome in a Mouse Model of Traumatic Brain Injury. ACS Nano. 2017;11:8600–11. https://doi.org/10.1021/acsnano.7b03426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai H-C, et al. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. Biomater Adv. 2022;139:213015 https://doi.org/10.1016/j.bioadv.2022.213015

    Article  CAS  PubMed  Google Scholar 

  40. Parent LR, Bakalis E, Ramírez-Hernández A, Kammeyer JK, Park C, de Pablo J, et al. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. J Am Chem Soc. 2017;139:17140–51. https://doi.org/10.1021/jacs.7b09060

    Article  CAS  PubMed  Google Scholar 

  41. Tian Q, Fei C, Yin H, Feng Y. Stimuli-responsive polymer wormlike micelles. Prog Polymer Sci. 2019;89:108–32. https://doi.org/10.1016/j.progpolymsci.2018.10.001

    Article  CAS  Google Scholar 

  42. Lund R, Willner L, Monkenbusch M, Panine P, Narayanan T, Colmenero J, et al. Structural Observation and Kinetic Pathway in the Formation of Polymeric Micelles. Phys Rev Lett. 2009;102:188301 https://doi.org/10.1103/PhysRevLett.102.188301

    Article  CAS  PubMed  Google Scholar 

  43. Lund R, Brun G, Chevallier E, Narayanan T, Tribet C. Kinetics of Photocontrollable Micelles: Light-Induced Self-Assembly and Disassembly of Azobenzene-Based Surfactants Revealed by TR-SAXS. Langmuir. 2016;32:2539–48. https://doi.org/10.1021/acs.langmuir.5b04711

    Article  CAS  PubMed  Google Scholar 

  44. Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka K. Core-Polymerized Reactive Micelles from Heterotelechelic Amphiphilic Block Copolymers. Macromolecules. 1999;32:1140–6. https://doi.org/10.1021/ma9815962

    Article  CAS  Google Scholar 

  45. Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for delivery of anticancer drugs. J Controlled Release. 2006;114:163–74. https://doi.org/10.1016/j.jconrel.2006.06.015

    Article  CAS  Google Scholar 

  46. Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies. Biomaterials. 2007;28:5581–93. https://doi.org/10.1016/j.biomaterials.2007.08.047

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka R, Arai K, Matsuno J, Soejima M, Lee JH, Takahashi R, et al. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their robust stability in vivo. Polymer Chem. 2020;11:4408–16. https://doi.org/10.1039/D0PY00610F

    Article  CAS  Google Scholar 

  48. Matsuno J, Kanamaru T, Arai K, Tanaka R, Lee JH, Takahashi R, et al. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics depending on the structural characteristics. J Controlled Release. 2020;324:405–12. https://doi.org/10.1016/j.jconrel.2020.05.035

    Article  CAS  Google Scholar 

  49. Zheng P, McCarthy TJ. D4H/D4V Silicone: A Replica Material with Several Advantages for Nanoimprint Lithography and Capillary Force Lithography. Langmuir. 2011;27:7976–9. https://doi.org/10.1021/la201141k

    Article  CAS  PubMed  Google Scholar 

  50. Fujii S, Yamada S, Matsumoto S, Kubo G, Yoshida K, Tabata E, et al. Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Corresponding to Regular Polyhedra. Sci Rep. 2017;7:44494 https://doi.org/10.1038/srep44494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klein M, Menta M, Dacoba TG, Crecente-Campo J, Alonso MJ, Dupin D, et al. Advanced nanomedicine characterization by DLS and AF4-UV-MALS: Application to a HIV nanovaccine. J Pharma Biomed Analy. 2020;179:113017 https://doi.org/10.1016/j.jpba.2019.113017

    Article  CAS  Google Scholar 

  52. Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Separation and characterization of liposomes using asymmetric flow field-flow fractionation with online multi-angle light scattering detection. J Chromatogr A. 2021;1636:461798 https://doi.org/10.1016/j.chroma.2020.461798

    Article  CAS  PubMed  Google Scholar 

  53. Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Substantially Exceeding the Minimum for Brush Conformation. Mol Pharma. 2014;11:1250–8. https://doi.org/10.1021/mp400703d

    Article  CAS  Google Scholar 

  54. Du X-J, Wang J-L, Liu W-W, Yang J-X, Sun C-Y, Sun R, et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials. 2015;69:1–11. https://doi.org/10.1016/j.biomaterials.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  55. Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Delivery Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002

    Article  CAS  Google Scholar 

  56. Cao Z-T, Gan L-Q, Jiang W, Wang J-L, Zhang H-B, Zhang Y, et al. Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano. 2020;14:3563–75. https://doi.org/10.1021/acsnano.9b10015

    Article  CAS  PubMed  Google Scholar 

  57. Wang J-L, Du X-J, Yang J-X, Shen S, Li H-J, Luo Y-L, et al. The effect of surface poly(ethylene glycol) length on in vivo drug delivery behaviors of polymeric nanoparticles. Biomaterials. 2018;182:104–13. https://doi.org/10.1016/j.biomaterials.2018.08.022

    Article  CAS  PubMed  Google Scholar 

  58. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT Nanoparticles: The Impact of PEG Density on Protein Binding, Macrophage Association, Biodistribution, and Pharmacokinetics. Nano Lett. 2012;12:5304–10. https://doi.org/10.1021/nl302638g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules. 2022;23:3909–18. https://doi.org/10.1021/acs.biomac.2c00730

    Article  CAS  PubMed  Google Scholar 

  60. Nagarajan R, Ruckenstein E. Theory of surfactant self-assembly: a predictive molecular thermodynamic approach. Langmuir. 1991;7:2934–69. https://doi.org/10.1021/la00060a012

    Article  CAS  Google Scholar 

  61. Li Y, Xiao K, Luo J, Xiao W, Lee JS, Gonik AM, et al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials. 2011;32:6633–45. https://doi.org/10.1016/j.biomaterials.2011.05.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao J, Yan C, Chen Z, Liu J, Song H, Wang W, et al. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J Coll Interfac Sci. 2019;540:66–77. https://doi.org/10.1016/j.jcis.2019.01.021

    Article  CAS  Google Scholar 

  63. Talelli M, Barz M, Rijcken CJ, Kiessling F, Hennink WE, Lammers T. Core-Crosslinked Polymeric Micelles: Principles, Preparation, Biomedical Applications and Clinical Translation. Nano Today. 2015;10:93–117. https://doi.org/10.1016/j.nantod.2015.01.005. From NLM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zalba S, ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Facing the PEG dilemma. J Controlled Release. 2022;351:22–36. https://doi.org/10.1016/j.jconrel.2022.09.002

    Article  CAS  Google Scholar 

  65. Miura Y, Hoshino Y, Seto H. Glycopolymer Nanobiotechnology. Chem Rev. 2016;116:1673–92. https://doi.org/10.1021/acs.chemrev.5b00247

    Article  CAS  PubMed  Google Scholar 

  66. Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules. 2014;15:1955–69. https://doi.org/10.1021/bm5003009

    Article  CAS  PubMed  Google Scholar 

  67. Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles. J Drug Targeting. 2019;27:292–9. https://doi.org/10.1080/1061186X.2018.1491978

    Article  CAS  Google Scholar 

  68. Li W, Liu Q, Liu L. Antifouling Gold Surfaces Grafted with Aspartic Acid and Glutamic Acid Based Zwitterionic Polymer Brushes. Langmuir. 2014;30:12619–26. https://doi.org/10.1021/la502789v

    Article  CAS  PubMed  Google Scholar 

  69. Alswieleh AM, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, et al. Zwitterionic Poly(amino acid methacrylate) Brushes. J Am Chem Soc. 2014;136:9404–13. https://doi.org/10.1021/ja503400r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: Partners in crime. Semin Cancer Biol. 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  71. Häfliger P, Charles R-P. The L-Type Amino Acid Transporter LAT1—An Emerging Target in Cancer. Int J Mol Sci. 2019;20:2428.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yamada N, Honda Y, Takemoto H, Nomoto T, Matsui M, Tomoda K, et al. Engineering Tumour Cell-Binding Synthetic Polymers with Sensing Dense Transporters Associated with Aberrant Glutamine Metabolism. Sc Rep. 2017;7:6077 https://doi.org/10.1038/s41598-017-06438-y

    Article  CAS  Google Scholar 

  73. Takano S, Sakurai K, Fujii S. Internalization into cancer cells of zwitterionic amino acid polymers via amino acid transporter recognition. Polym Chem. 2021;12:6083–7. https://doi.org/10.1039/D1PY01010G

    Article  CAS  Google Scholar 

  74. Leiske MN, Mazrad ZAI, Zelcak A, Wahi K, Davis TP, McCarroll JA, et al. Zwitterionic Amino Acid-Derived Polyacrylates as Smart Materials Exhibiting Cellular Specificity and Therapeutic Activity. Biomacromolecules. 2022;23:2374–87. https://doi.org/10.1021/acs.biomac.2c00143

    Article  CAS  PubMed  Google Scholar 

  75. Fujii S, Sakurai K. Zwitterionic Amino Acid Polymer-Grafted Core-Crosslinked Particle toward Tumor Delivery. Biomacromolecules. 2022;23:3968–77. https://doi.org/10.1021/acs.biomac.2c00803

    Article  CAS  PubMed  Google Scholar 

  76. Zhao L-P, Chen S-Y, Zheng R-R, Kong R-J, Rao X-N, Chen AL, et al. Self-Delivery Nanomedicine for Glutamine-Starvation Enhanced Photodynamic Tumor Therapy. Adv Healthcare Mater. 2022;11:2102038 https://doi.org/10.1002/adhm.202102038. (acccessed 2023/01/29)

    Article  CAS  Google Scholar 

  77. Müllner M, Yang K, Kaur A, New EJ. Aspect-ratio-dependent interaction of molecular polymer brushes and multicellular tumour spheroids. Polym Chem. 2018;9:3461–5. https://doi.org/10.1039/C8PY00703A

    Article  Google Scholar 

  78. Nakamura H, Koziolová E, Chytil P, Etrych T, Haratake M, Maeda H. Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Mol Pharma. 2019;16:3452–9. https://doi.org/10.1021/acs.molpharmaceut.9b00248

    Article  CAS  Google Scholar 

  79. Fujii S, Takano S, Nakazawa K, Sakurai K. Impact of Zwitterionic Polymers on the Tumor Permeability of Molecular Bottlebrush-Based Nanoparticles. Biomacromolecules. 2022;23:2846–55. https://doi.org/10.1021/acs.biomac.2c00216

    Article  CAS  PubMed  Google Scholar 

  80. Ozer I, Kelly G, Gu R, Li X, Zakharov N, Sirohi P, et al. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. Adv Sci (Weinh). 2022;9:e2103672 https://doi.org/10.1002/advs.202103672.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI: Grant-in-Aid for Scientific Research (Grant Number 19K15394) and Grant-in-Aid for Scientific Research B (22H01913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shota Fujii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, S. Polymeric core-crosslinked particles prepared via a nanoemulsion-mediated process: from particle design and structural characterization to in vivo behavior in chemotherapy. Polym J 55, 921–933 (2023). https://doi.org/10.1038/s41428-023-00793-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-023-00793-6

This article is cited by

Search

Quick links