Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Complex formation of pendant lysine residue-containing zwitterionic random copolymer with copper (II)

Abstract

Excess copper accumulation in the body can lead to various health complications including Parkinson’s disease, Alzheimer’s disease, gastrointestinal disorders, liver damage, and hemolytic anemia. As such, the development of effective strategies to remove excess copper is critical for preventing these adverse health outcomes. In this study, a copolymer (P(MPC/LysA)) comprising 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and l-lysinylacrylamide (LysA) was synthesized via reversible addition–fragmentation chain transfer (RAFT) radical polymerization. Under different pH conditions, the pendant primary amine (–NH3+) and carboxy groups (–COOH) of LysA underwent protonation and deprotonation, resulting in cationic, zwitterionic, and anionic structures. The copolymer exhibited a zwitterionic structure under physiological conditions due to the pH-independent neutral charge of MPC. The LysA residues formed a complex with copper (II) ions (Cu2+) under neutral-basic conditions, with two pendant l-lysine residues forming a complex with one Cu2+ molecule. The addition of Cu2+ to an aqueous solution of P(MPC/LysA) at pH 7.4 resulted in the formation of interpolymer aggregates due to Cu2+/LysA complex formation. Overall, this study reveals that P(MPC/LysA) has potential for use in removing excess Cu2+ in the body by forming water-soluble aggregates with Cu2+ at physiological pH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tainer JA, Roberts VA, Getzoff ED. Metal-binding sites in proteins. Curr Opin Biotechnol. 1991;2:582–91.

    CAS  PubMed  Google Scholar 

  2. London WP, Steck TL. Kinetics of enzyme reactions with interaction between a substrate and a (Metal) modifier. Biochemistry. 1969;8:1767–79.

    CAS  PubMed  Google Scholar 

  3. Rosenzweig AC, Sazinsky MH. Structural insights into dioxygen-activating copper enzymes. Curr Opin Struct Biol. 2006;16:729–35.

    CAS  PubMed  Google Scholar 

  4. Vivoli G, Bergomi M, Rovesti S, Pinotti M, Caselgrandi E. Zinc, copper, and zinc- or copper-dependant enzymes in human hypertension. Biol Trace Elem Res. 1995;49:97–106.

    CAS  PubMed  Google Scholar 

  5. Cohen NL, Keen CL, Hurley LS, Lonnerdal B. Determinants of copper-deficiency anemia in rats. J Nutr. 1985;115:710–25.

    CAS  PubMed  Google Scholar 

  6. Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012;19:58–60.

    CAS  PubMed  Google Scholar 

  7. Dollwet HHA, Sorenson JRJ. Roles of copper in bone maintenance and healing. Biol Trace Elem Res. 1988;18:39–48.

    CAS  PubMed  Google Scholar 

  8. Mandelbrote BM, Stanier MW, Thompson RHS, Thruston MN. Studies on copper metabolism in demyelinating disease of the central nervous system. Brain. 1948;71:212–28.

    CAS  PubMed  Google Scholar 

  9. Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C. Copper and copper proteins in Parkinson’s disease. Oxid Med Cell Longev. 2014;2014:147251.

    PubMed  PubMed Central  Google Scholar 

  10. Balland V, Hureau C, Saveant JM. Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. Proc Natl Acad Sci USA. 2010;107:17113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Nino WR, Pedraza-Chaverri J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol. 2014;69:182–201.

    CAS  PubMed  Google Scholar 

  12. Fuentealba IC, Mullins JE, Abuto EM, Lau JC, Cherian GM. Effect of age and sex on liver damage due to excess dietary copper in Fischer 344 rats. J Toxicol Clin Toxicol. 2000;38:709–17.

    CAS  PubMed  Google Scholar 

  13. Ribarov SR, Benov LC. Relationship between the hemolytic action of heavy metals and lipid peroxidation. Biochim Biophys Acta. 1981;640:721–6.

    CAS  PubMed  Google Scholar 

  14. Forbes JR, Hsi G, Cox DW. Role of the copper-binding domain in the copper transport function of ATP7B, the P-type ATPase defective in Wilson disease. J Biol Chem. 1999;274:12408–113.

    CAS  PubMed  Google Scholar 

  15. Gu M, Cooper JM, Butler P, Walker AP, Mistry PK, Dooley JS, et al. Oxidative-phosphorylation defect in liver of patients with Wilson’s disease. Lancet 2000;356:469–74.

    CAS  PubMed  Google Scholar 

  16. Purchase R. The link between copper and Wilson’s disease. Sci Prog. 2013;96:213–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lorincz MT, Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, et al. Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med. 2007;13:164–70.

    Google Scholar 

  18. Lorincz MT. Neurologic Wilson’s disease. Ann N Y Acad Sci. 2010;1184:173–87.

    CAS  PubMed  Google Scholar 

  19. Roberts EA, Schilsky ML. Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47:2089–111.

    CAS  PubMed  Google Scholar 

  20. Cumings JN. The effects of B. A. L. in hepatolenticular degeneration. Brain. 1951;74:10–22.

    CAS  PubMed  Google Scholar 

  21. Ala A, Walker AP, Ashkan K, Dooley JS, Schisky ML. Wilson’s disease. Lancet. 2007;369:397–408.

    CAS  PubMed  Google Scholar 

  22. Cao Y, Skaug MA, Anderson O, Aaseth J. Chelation therapy in intoxications with mercury, lead and copper. J Trace Elem Med Biol. 2015;31:188–92.

    CAS  PubMed  Google Scholar 

  23. Weiss KH, Thurik F, Gotthardt DN, Schafer M, Teufel U, Wiegand F, et al. Efficacy and safety of oral chelators in treatment of patients with Wilson disease. Clin Gastroenterol Hepatol. 2013;11:1028–35.

    CAS  PubMed  Google Scholar 

  24. Bolognin S, Drago D, Messori L, Zatta P. Chelation therapy for neurodegenerative diseases. Med Res Rev. 2009;29:547–70.

    CAS  PubMed  Google Scholar 

  25. Cullen NM, Wolf LR, St Clair D. Pediatric arsenic ingestion. Am J Emerg Med. 1995;13:432–5.

    CAS  PubMed  Google Scholar 

  26. Debayle M, Balloul E, Dembele F, Xu X, Hanafi M, Ribot F, et al. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials. 2019;219:119357.

    CAS  PubMed  Google Scholar 

  27. Yin T, Chu X, Cheng J, Liang J, Zhou J, Huo M. Hypoxia-sensitive zwitterionic vehicle for tumor-specific drug delivery through antifouling-based stable biotransport alongside PDT-sensitized controlled release. Biomacromolecules. 2021;22:2233–47.

    CAS  PubMed  Google Scholar 

  28. Yuan Y, Mao Y, Du X, Du J, Wang F, Wang J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv Mater. 2012;24:5476–80.

    CAS  PubMed  Google Scholar 

  29. Cai M, Leng M, Lu A, He L, Xie X, Huang L, et al. Synthesis of amphiphilic copolymers containing zwitterionic sulfobetaine as pH and redox responsive drug carriers. Colloids Surf B. 2015;126:1–9.

    CAS  Google Scholar 

  30. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Natsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic. Nat Mater. 2004;3:829–36.

    CAS  PubMed  Google Scholar 

  31. Ishihara K, Aragaki R, Ueda T, Watenabe A, Nakabayashi N. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res. 1990;24:1069–77.

    CAS  PubMed  Google Scholar 

  32. Fujii S, Kido M, Sato M, Higaki Y, Hirai T, Ohta N. et al. pH-Responsive and selective protein adsorption on an amino acid-based zwitterionic polymer surface. Polym Chem. 2015;6:7053–9.

    CAS  Google Scholar 

  33. Ndokoye P, Ke J, Liu J, Zhao Q, Li X. L-Cysteine-modified gold nanostars for SERS-based copper ions detection in aqueous media. Langmuir. 2014;30:13491–7.

    CAS  PubMed  Google Scholar 

  34. Chen PC, Lai JJ, Huang CJ. Bio-inspired amphoteric polymer for triggered-release drug delivery on breast cancer cells based on metal coordination. ACS Appl Mater Interfaces. 2021;13:25663–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Banerjee S, Maji T, Paira TK, Mandal TK. Amino-acid-based zwitterionic polymer and its Cu(II)-induced aggregation into nanostructures: a template for CuS and CuO nanoparticles. Macromol Rapid Commun. 2013;34:1480–6.

    CAS  PubMed  Google Scholar 

  36. Kuo S, Chwn P, Huang K, Huang C. Bio-inspired zwitterionic polymeric chelating assembly for treatment of copper-induced cytotoxicity and hemolysis. Mater Sci Eng C. 2021;129:112367.

    CAS  Google Scholar 

  37. Huang KT, Hsieh PS, Dai LG, Huang CJ. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B. 2020;8:7390–402.

    CAS  PubMed  Google Scholar 

  38. Nagaoka S, Sundo A, Satoh T, Nagira K, Kishi R, Ueno K, et al. Method for a convenient and efficient synthesis of amino acid acrylic monomers with zwitterionic structure. Synth Commun. 2005;35:2529–34.

    CAS  Google Scholar 

  39. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct s ynthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001;34:2248–56.

    CAS  Google Scholar 

  40. Srinivasulu B, Rao PR, Sundaram EV. Synthesis and characterization of ethyl methacrylate-acrylamide copolymers. J Appl Polym Sci. 1991;43:1521–5.

    CAS  Google Scholar 

  41. Wang Y, Zhang X, Li W, Cheng J, Liu C, Zheng J. Determination of reactivity ratios of copolymerization of acrylamide (AM) and methacryloxyethyltrimethyl ammonium chloride (DMC) with ultraviolet initiation, and their sequence length distribution. Polym Polym Compos. 2016;24:307–14.

    CAS  Google Scholar 

  42. Dinda P, Anas M, Banerjee P, Mandal TK. Dual thermoresponsive Boc-lysine-based acryl polymer: RAFT kinetics and anti-protein-fouling of its zwitterionic form. Macromolecules. 2022;55:4011–24.

    CAS  Google Scholar 

  43. Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids Surf B. 2007;54:88–93.

    CAS  Google Scholar 

  44. Hidmi L, Edwards M. Role of Temperature and pH in Cu(OH)2 solubility. Environ Sci Technol. 1999;33:2607–10.

    CAS  Google Scholar 

  45. Khan MA, Meullemeestre J, Schwing MJ, Vierling F. Stability, spectra and structure of copper (II) chloride complexes in acetic acid. Polyhedron. 1983;2:459–63.

    CAS  Google Scholar 

  46. Pedersen JS. Form factors of block copolymer micelles with spherical, ellipsoidal and cylindrical cores. J Appl Cryst. 2000;33:637–40.

    CAS  Google Scholar 

  47. Beaucage G. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Cryst. 1996;29:134–46.

    CAS  Google Scholar 

  48. Beaucage G. Approximations leading to a unified exponential/power-low approach to small-angle scattering. J Appl Cryst. 1995;28:717–28.

    CAS  Google Scholar 

  49. Kujawa P, Tanaka F, Winnik FM. Temperature-dependent properties of telechelic hydrophobically modified poly(N-isopropylacylamides) in water: evidence from light scattering and fluorescence spectroscopy for the formation of stable mesoglobules at elevated temperature. Macromolecules. 2006;39:3048–55.

    CAS  Google Scholar 

  50. Konishi T, Yoshizaki T, Yamakawa H. On the “universal constants” ρ and ϕ of flexible polymers. Macromolecules. 1991;24:5614–22.

    CAS  Google Scholar 

  51. Platten F, Hansen J, Wagner D, Egelhaaf SU. Second virial coefficient as determined from protein phase behavior. J Phys Chem Lett. 2016;7:4008–14.

    CAS  PubMed  Google Scholar 

  52. Annunziata O, Payne A, Wang Y. Solubility of lysozyme in the presence of aqueous chloride salts: common-ion effect and its role on solubility and crystal thermodynamics. J Am Chem Soc. 2008;130:13347–52.

    CAS  PubMed  Google Scholar 

  53. Sikora A, Shard AG, Minelli C. Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir. 2016;3:2216–24.

    Google Scholar 

  54. Multia E, Tear CJY, Palviainen M, Siljander P, Riekkola ML. Fast isolation of highly specific population of platelet-derived extracellular resicles from blood plasma by affinity monolithic column, immobilized with anti-human CD61 antibody. Anal Chim Acta. 2019;1091:160–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by KAKENHI grants (21H02005, 21H05027, 23H04088) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP12022359, JPJSBP120203510), the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (20234041),” and MEXT Promotion of Distinctive Joint Research Center Program (JPMXP 0621467946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, K., Bhowmik, S., Huang, KT. et al. Complex formation of pendant lysine residue-containing zwitterionic random copolymer with copper (II). Polym J 55, 1075–1083 (2023). https://doi.org/10.1038/s41428-023-00808-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-023-00808-2

Search

Quick links