Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Selective acetylation of amorphous region of poly(vinyl alcohol) in supercritical carbon dioxide

Abstract

The postfunctionalization of poly(vinyl alcohol) (PVA) with a hierarchical structure has been challenging because conventional polymer functionalization reactions are performed in homogeneous solution states. In this study, the selective functionalization of PVA was achieved in supercritical carbon dioxide (sc-CO2) through acetylation in the amorphous region only and not in the crystalline region. The crystalline region of PVA was retained in the amorphous-selective acetylated PVA synthesized in sc-CO2. In addition, the oriented structure of the PVA crystallites was maintained even after acetylation of the drawn PVA film in sc-CO2. Moisture adsorption affected the crystalline structure of PVA acetylated in sc-CO2. The acetylated PVA synthesized in sc-CO2 included a larger number of water molecules under humid conditions, and the increase in thickness was smaller than that of randomly acetylated PVA. This reason was the rigid crystalline structure and the sequential hydrophilic PVA units in the PVA acetylated in sc-CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goldmann AS, Glassner M, Inglis AJ, Barner-Kowollik C. Post-functionalization of polymers via orthogonal ligation chemistry. Macromol Rapid Commun 2013;34:810–49.

    Article  CAS  Google Scholar 

  2. Chen X, Michinobu T. Postpolymerization modification: a powerful tool for the synthesis and function tuning of stimuli-responsive polymers. Macromol Chem Phys. 2022;223:2100370.

    Article  CAS  Google Scholar 

  3. Fahs GB, Benson SD, Moore RB. Blocky sulfonation of syndiotactic polystyrene: a facile route toward tailored ionomer architecture via postpolymerization functionalization in the gel state. Macromolecules. 2017;50:2387–96.

    Article  CAS  Google Scholar 

  4. Anderson LJ, Yuan X, Fahs GB, Moore RB. Blocky ionomers via sulfonation of poly(ether ether ketone) in the semicrystalline gel state. Macromolecules. 2018;51:6226–37.

    Article  CAS  Google Scholar 

  5. Kishimoto M, Mita K, Ogawa H, Takenaka M. Effect of submicron structures on the mechanical behavior of polyethylene. Macromolecules. 2020;53:9097–107.

    Article  CAS  Google Scholar 

  6. Baer E, Hiltner A, Keith HD. Hierarchical structure in polymeric materials. Science. 1987;235:1015–22.

    Article  CAS  Google Scholar 

  7. Mandelkern L. The relation between structure and properties of crystalline polymers. Polym J. 1985;17:337–50.

    Article  CAS  Google Scholar 

  8. Tashiro K. Molecular theory of mechanical properties of crystalline polymers. Prog Polym Sci. 1993;18:377–435.

    Article  CAS  Google Scholar 

  9. Oppenlander GC. Structure and properties of crystalline polymers. Science. 1968;159:1311–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tadokoro H. Structure and properties of crystalline polymers. Polymer. 1984;25:147–64.

    Article  CAS  Google Scholar 

  11. Kanehashi S, Kusakabe A, Sato S, Nagai K. Analysis of permeability; solubility and diffusivity of carbon dioxide; oxygen; and nitrogen in crystalline and liquid crystalline polymers. J Membr Sci. 2010;365:40–51.

    Article  CAS  Google Scholar 

  12. Jordan EF Jr. Side-chain crystallinity. V. Heats of fusion and melting temperatures on monomers whose homopolymers have long side chains. J Polym Sci Part A-1 Polym Chem. 1972;10:3347–66.

    Article  CAS  Google Scholar 

  13. O’Leary KA, Paul DR. Physical properties of poly(n-alkyl acrylate) copolymers. Part 2. Crystalline/non-crystalline combinations. Polymer. 2006;47:1245–58.

    Article  Google Scholar 

  14. Miho Y, Hirai S, Nakano R, Sekiguchi H, Yao S. Modification of polyethylene using side-chain crystalline block copolymer and evaluation of hydrophilicity. Polym J. 2018;50:439–45.

    Article  CAS  Google Scholar 

  15. Hirai S, Ishimoto S, Obuchi H, Yao S. Improving the adhesion of polyethylene surfaces using Side-Chain crystalline block copolymer. J Adhes Sci Technol. 2019;33:2567–78.

    Article  CAS  Google Scholar 

  16. Hempel E, Beiner M, Huth H, Donth E. Temperature modulated DSC for the multiple glass transition in poly(n-alkyl methacrylates). Thermochim Acta. 2002;391:219–25.

    Article  CAS  Google Scholar 

  17. Wang X, He X, Huang G, Wu J. Correlations between alkyl side chain length and dynamic mechanical properties of poly(n-alkyl acrylates) and poly(n-alkyl methacrylates). Polymer. 2012;53:665–72.

    Article  CAS  Google Scholar 

  18. Arbe A, Genix A-C, Colmenero J, Richter D, Fouquet P. Anomalous relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl methacrylates). Soft Matter. 2008;4:1792–5.

    Article  CAS  Google Scholar 

  19. Tsibouklis J, Graham P, Eaton PJ, Smith JR, Nevell TG, Smart JD, et al. Poly(perfluoroalkyl methacrylate) film structures: surface organization phenomena, surface energy determinations, and force of adhesion measurements. Macromolecules. 2000;33:8460–5.

    Article  CAS  Google Scholar 

  20. Honda K, Morita M, Sakata O, Sasaki S, Takahara A. Effect of surface molecular aggregation state and surface molecular motion on wetting behavior of water on poly(fluoroalkyl methacrylate) thin films. Macromolecules. 2010;43:454–60.

    Article  CAS  Google Scholar 

  21. Yamaguchi H, Honda K, Kobayashi M, Morita M, Masunaga H, Sakata O, et al. Molecular aggregation state of surface-grafted poly{2-(perfluorooctyl)ethyl acrylate} thin film analyzed by grazing incidence X-ray diffraction. Polym J. 2008;40:854–60.

    Article  CAS  Google Scholar 

  22. Honda K, Morita M, Otsuka H, Takahara A. Molecular aggregation structure and surface properties of poly(fluoroalkyl acrylate) thin films. Macromolecules. 2005;38:5699–705.

    Article  CAS  Google Scholar 

  23. Volkov VV, Platé NA, Takahara A, Kajiyama T, Amaya N, Murata Y. Aggregation state and mesophase structure of comb-shaped polymers with fluorocarbon side groups. Polymer. 1992;33:1316–20.

    Article  CAS  Google Scholar 

  24. Park IJ, Lee S-B, Choi CK, Kim K-J. Surface properties and structure of poly (perfluoroalkylethyl methacrylate). J Colloid Interface Sci. 1996;181:284–8.

    Article  CAS  Google Scholar 

  25. Chua GBH, Roth PJ, Duong HTT, Davis TP, Lowe AB. Synthesis and thermoresponsive solution properties of poly[oligo(ethylene glycol) (meth)acrylamide]s: biocompatible PEG analogues. Macromolecules. 2012;45:1362–74.

    Article  CAS  Google Scholar 

  26. Deng X, Smeets NMB, Sicard C, Wang J, Brennan JD, Filipe CDM, et al. Poly(oligoethylene glycol methacrylate) dip-coating: turning cellulose paper into a protein-repellent platform for biosensors. J Am Chem Soc. 2014;136:12852–5.

    Article  CAS  Google Scholar 

  27. Kasprzak CR, Anderson LJ, Moore RB. Tailored sequencing of highly brominated Poly(ether ether ketone) as a means to preserve crystallizability and enhance Tg. Polymer. 2022;251:124918.

    Article  CAS  Google Scholar 

  28. Noble KF, Troya D, Talley SJ, Ilavsky J, Moore RB. High-resolution comonomer sequencing of blocky brominated syndiotactic polystyrene copolymers using 13C NMR spectroscopy and computer simulations. Macromolecules. 2020;53:9539–52.

    Article  CAS  Google Scholar 

  29. Noble KF, Noble AM, Talley SJ, Moore RB. Blocky bromination of syndiotactic polystyrene via post-polymerization functionalization in the heterogeneous gel state. Polym Chem. 2018;9:5095–106.

    Article  CAS  Google Scholar 

  30. Anderson LJ, Moore RB. Sulfonation of blocky brominated PEEK to prepare hydrophilic-hydrophobic blocky copolymers for efficient proton conduction. Solid State Ion. 2019;336:47–56.

    Article  CAS  Google Scholar 

  31. Matsumoto T, Yorifuji M, Sugiyama Y, Nishino T. Butyralization of poly(vinyl alcohol) under supercritical carbon dioxide for a humidity-resistant adhesive to glass substrates. Polym J. 2020;52:1349–56.

    Article  CAS  Google Scholar 

  32. Koytsoumpa EI, Bergins C, Kakaras E. The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids. 2018;132:3–16.

    Article  CAS  Google Scholar 

  33. Nishino T, Kotera M, Suetsugu M, Murakami H, Urushihara Y. Acetylation of plant cellulose fiber in supercritical carbon dioxide. Polymer. 2011;52:830–6.

    Article  CAS  Google Scholar 

  34. Rasmussen RS, Brattain RR. Infrared spectra of some carboxylic acid derivatives. J Am Chem Soc. 1949;71:1073–9.

    Article  CAS  Google Scholar 

  35. Miyasaka, K. PVA-Iodine complexes: formation, structure, and properties BT - structure in polymers with special properties. Springer Berlin Heidelberg; 1993. https://doi.org/10.1007/3-540-56579-5_3.

  36. Sakurada I. Polyvinyl alcohol fibres; international fiber science and technology series. 6. New York: Marcel Dekker, Inc; 1985.

    Google Scholar 

  37. Mitamura K, Yamada NL, Sagehashi H, Torikai N, Arita H, Terada M, et al. Novel neutron reflectometer SOFIA at J-PARC/MLF for in-situ soft-interface characterization. Polym J. 2013;45:100–8.

    Article  CAS  Google Scholar 

  38. Yamada NL, Torikai N, Mitamura K, Sagehashi H, Sato S, Seto H, et al. Design and performance of horizontal-type neutron reflectometer SOFIA at J-PARC/MLF. Eur Phys J. 2011;126:108.

    Google Scholar 

  39. Miyazaki T, Miyata N, Yoshida T, Arima H, Tsumura Y, Torikai N, et al. Detailed structural study on the poly(vinyl alcohol) adsorption layers on a Si substrate with solvent vapor-induced swelling. Langmuir. 2020;36:3415–24.

    Article  CAS  PubMed  Google Scholar 

  40. Miyazaki T, Miyata N, Asada M, Tsumura Y, Torikai N, Aoki H, et al. Elucidation of a heterogeneous layered structure in the thickness direction of poly(vinyl alcohol) films with solvent vapor-induced swelling. Langmuir. 2019;35:11099–107.

    Article  CAS  PubMed  Google Scholar 

  41. Kaji, K Dissertation, Kyoto University, Kyoto, Japan, 1970. https://doi.org/10.14989/doctor.k997.

  42. Nitta I, Seki S, Tadokoro H. Infrared absorption spectra of polyvinyl alcohol films swollen in water. Kobunshi ronbunshu. 1956;13:45–46.

    CAS  Google Scholar 

Download references

Acknowledgements

The neutron experiment at the Materials and Life Science Experimental Facility (MLF) of J-PARC was performed under the user program (Proposal No. 2019B0296). This work was supported by JSPS KAKENHI Grant Numbers JP22H04546, JP22H04536, JP21K14683, JP20H05222, JP19H05714 and JP19H05717.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Takuya Matsumoto or Takashi Nishino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Yorifuji, M., Hori, R. et al. Selective acetylation of amorphous region of poly(vinyl alcohol) in supercritical carbon dioxide. Polym J 55, 1287–1293 (2023). https://doi.org/10.1038/s41428-023-00832-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-023-00832-2

Search

Quick links