Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of flexible spacers in achieving photoinduced phase transitions of azobenzene-based liquid-crystalline polymers at room temperature

Abstract

The photoinduced solid‒liquid phase transition is a fascinating phenomenon that can be utilized for a range of applications, including debondable adhesives, photolithography, and soft actuators; however, developing polymers with this function is not trivial. In this work, we report an azobenzene (Azo)-containing polymer capable of rapid room-temperature photoliquefaction upon UV irradiation and elucidate the design principles for photoliquefying polymers that harness the photothermal effect. We prepare a series of Azo polymers by coupling diacrylate Azo with dithiol-functionalized flexible spacers of different lengths, such as ethylene glycol (EG), hexa(ethylene glycol) (HEG), and poly(ethylene glycol) (PEG). EG-Azo, with the shortest spacer, has a high melting temperature (Tm) of 78 °C due to the strong interactions among the liquid-crystalline Azo molecules. Owing to the high Tm, EG-Azo does not exhibit a photoinduced solid‒liquid phase transition, although it has the greatest photothermal effect among the polymers (temperature rise to 50 °C). The incorporation of the longer spacers effectively decreases the Tm of the Azo polymers. For example, PEG-Azo possesses a reduced Tm of 40 °C, thereby enabling photoliquefaction at room temperature after only 1 min of UV irradiation. PEG-Azo can be reversibly returned to a solid-state within 5 min after the UV light is turned off.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu W-C, Sun S, Wu S. Photoinduced reversible solid‐to‐liquid transitions for photoswitchable materials. Angew Chem Int Ed 2019;58:9712–40.

    Article  CAS  Google Scholar 

  2. Bisoyi HK, Li Q. Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications. Chem Rev 2016;116:15089–166.

    Article  CAS  Google Scholar 

  3. Zhou H, Kuenstler AS, Xu W, Hu M, Hayward RC. A semicrystalline poly (azobenzene) exhibiting room temperature light-induced melting, crystallization, and alignment. Macromolecules. 2022;55:10330–40.

    Article  CAS  Google Scholar 

  4. Wu Z, Ji C, Zhao X, Han Y, Müllen K, Pan K, et al. Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives. J Am Chem Soc. 2019;141:7385–90.

    Article  CAS  Google Scholar 

  5. Yue Y, Norikane Y, Azumi R, Koyama E. Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nat Commun 2018;9:3234.

    Article  PubMed Central  Google Scholar 

  6. Zhang P, Cai F, Wang W, Wang G, Yu H. Light-switchable adhesion of azobenzene-containing siloxane-based tough adhesive. ACS Appl Polym Mater 2021;3:2325–9.

    Article  CAS  Google Scholar 

  7. Ito S, Akiyama H, Sekizawa R, Mori M, Yoshida M, Kihara H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl Mater Interfaces. 2018;10:32649–58.

    Article  CAS  Google Scholar 

  8. Zha RH, Vantomme G, Berrocal JA, Gosens R, de Waal B, Meskers S, et al. Photoswitchable nanomaterials based on hierarchically organized siloxane oligomers. Adv Funct Mater 2018;28:1703952.

    Article  Google Scholar 

  9. Norikane Y, Uchida E, Tanaka S, Fujiwara K, Koyama E, Azumi R, et al. Photoinduced crystal-to-liquid phase transitions of azobenzene derivatives and their application in photolithography processes through a solid–liquid patterning. Org Lett 2014;16:5012–5.

    Article  CAS  Google Scholar 

  10. Carroll GT, Lee KM, McConney ME, Hall HJ. Optical control of alignment and patterning in an azobenzene liquid crystal photoresist. J Mater Chem C. 2023;11:2177–85.

    Article  CAS  Google Scholar 

  11. Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, et al. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions. Nat Chem 2017;9:145–51.

    Article  CAS  Google Scholar 

  12. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev 2012;41:1809–25.

    Article  CAS  Google Scholar 

  13. Uchida E, Sakaki K, Nakamura Y, Azumi R, Hirai Y, Akiyama H, et al. Control of the orientation and photoinduced phase transitions of macrocyclic azobenzene. Chem Eur J 2013;19:17391–7.

    Article  CAS  Google Scholar 

  14. Norikane Y, Hirai Y, Yoshida M. Photoinduced isothermal phase transitions of liquid-crystalline macrocyclic azobenzenes. Chem Commun 2011;47:1770–2.

    Article  CAS  Google Scholar 

  15. de Haan LT, Schenning APHJ, Broer DJ. Programmed morphing of liquid crystal networks. Polymer 2014;55:5885–96.

    Article  Google Scholar 

  16. Yu H. Recent advances in photoresponsive liquid-crystalline polymers containing azobenzene chromophores. J Mater Chem C. 2014;2:3047–54.

    Article  CAS  Google Scholar 

  17. Yang B, Cai F, Huang S, Yu H. Athermal and soft multi-nanopatterning of azopolymers: phototunable mechanical properties. Angew Chem Int Ed 2020;59:4035–42.

    Article  CAS  Google Scholar 

  18. Hartley GS. The cis-form of azobenzene. Nature. 1937;140:281–281.

    Article  CAS  Google Scholar 

  19. Tazuke S, Kurihara S, Ikeda T. Amplified image recording in liquid crystal media by means of photochemically triggered phase transition. C. Chem Lett 2006;16:911–4.

    Article  Google Scholar 

  20. Pang X, Lv J-A, Zhu C, Qin L, Yu Y. Photodeformable azobenzene‐containing liquid crystal polymers and soft actuators. Adv Mater 2019;31:1904224.

    Article  CAS  Google Scholar 

  21. Lee C, Ndaya D, Bosire R, Kim NK, Kasi RM, Osuji CO. Fast photoswitchable order–disorder transitions in liquid-crystalline block co-oligomers. J Am Chem Soc 2022;144:390–9.

    Article  CAS  Google Scholar 

  22. Yang Y, Huang S, Ma Y, Yi J, Jiang Y, Chang X, et al. Liquid and photoliquefiable azobenzene derivatives for solvent-free molecular solar thermal fuels. ACS Appl Mater Interfaces. 2022;14:35623–34.

    Article  CAS  Google Scholar 

  23. Yang Q, Ge J, Qin M, Wang H, Yang X, Zhou X, et al. Controllable heat release of phase-change azobenzenes by optimizing molecular structures for low-temperature energy utilization. Sci China-Mater 2023;66:3609–20.

    Article  CAS  Google Scholar 

  24. Feng W, Luo W, Feng Y. Photo-responsive carbon nanomaterials functionalized by azobenzene moieties: structures, properties and application. Nanoscale. 2012;4:6118–34.

    Article  CAS  Google Scholar 

  25. Kuang Z-Y, Deng Y, Hu J, Tao L, Wang P, Chen J, et al. Responsive smart windows enabled by the azobenzene copolymer brush with photothermal effect. ACS Appl Mater Interfaces. 2019;11:37026–34.

    Article  CAS  Google Scholar 

  26. Chen Y, Yu H, Quan M, Zhang L, Yang H, Lu Y. Photothermal effect of azopyridine compounds and their applications. RSC Adv. 2015;5:4675–80.

    Article  CAS  Google Scholar 

  27. Da Cunha MP, van Thoor EAJ, Debije MG, Broer DJ, Schenning APHJ. Unravelling the photothermal and photomechanical contributions to actuation of azobenzene-doped liquid crystal polymers in air and water. J Mater Chem C. 2019;7:13502–9.

    Article  Google Scholar 

  28. Lahikainen M, Zeng H, Priimagi A. Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects. Nat Commun 2018;9:4148.

    Article  PubMed Central  Google Scholar 

  29. Guo Y, Xiao J, Sun Y, Song B, Zhang H, Dong B. Photoswitching of the melting point of a semicrystalline polymer by the azobenzene terminal group for a reversible solid-to-liquid transition. J Mater Chem A. 2021;9:9364–70.

    Article  CAS  Google Scholar 

  30. Lee KM, White TJ. Photochemical mechanism and photothermal considerations in the mechanical response of monodomain, azobenzene-functionalized liquid crystal polymer networks. Macromolecules. 2012;45:7163–70.

    Article  CAS  Google Scholar 

  31. Lamarre L, Sung CSP. Studies of physical aging and molecular motion by azochromophoric labels attached to the main chains of amorphous polymers. Macromolecules. 1983;16:1729–36.

    Article  CAS  Google Scholar 

  32. Algers J, Sperr P, Egger W, Liszkay L, Kögel G, de Baerdemaeker J, et al. Free volume determination of azobenzene−PMMA copolymer by a pulsed low-energy positron lifetime beam with in-situ UV illumination. Macromolecules. 2004;37:8035–42.

    Article  CAS  Google Scholar 

  33. Wang C, Weiss RG. Thermal cis → trans isomerization of covalently attached azobenzene groups in undrawn and drawn polyethylene films. Characterization and comparisons of occupied sites. Macromolecules. 2003;36:3833–40.

    Article  CAS  Google Scholar 

  34. Dong L, Zhai F, Wang H, Peng C, Feng Y, Feng W. An azobenzene-based photothermal energy storage system for co-harvesting photon energy and low-grade ambient heat via a photoinduced crystal-to-liquid transition. Energy Mater. 2022;2:200025.

    Article  CAS  Google Scholar 

  35. Urner LH, Thota BNS, Nachtigall O, Warnke S, von Helden G, Haag R, et al. Online monitoring the isomerization of an azobenzene-based dendritic bolaamphiphile using ion mobility-mass spectrometry. Chem Commun 2015;51:8801–4.

    Article  CAS  Google Scholar 

  36. Tsutsumi O, Shiono T, Ikeda T, Galli G. Photochemical phase transition behavior of nematic liquid crystals with azobenzene moieties as both mesogens and photosensitive chromophores. J Phys Chem B. 1997;101:1332–7.

    Article  CAS  Google Scholar 

  37. Asano T, Okada T, Thermal ZE. isomerization of azobenzenes. The pressure, solvent, and substituent effects. J Org Chem. 1984;49:4387–91.

    Article  CAS  Google Scholar 

  38. Yang SY, Kim JG, Heo YD, Choe YS. A study of the isomerization reaction rates of azobenzene derivatives. J Korean Chem Soc. 1994;38:552–61.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (RS-2023-00212143). This work was also supported by the H2KOREA funded by the Ministry of Education (2022Hydrogen fuel cell-003, Innovation Human Resources Development Project for Hydrogen Fuel Cells). This work was also supported by the Chung-Ang University Research Scholarship Grants in 2022. We would like to thank Prof. Dae Seok Kim and Hye Joo Lee at Pukyong National University for their help with the GPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wonho Lee or Changyeon Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Kim, D., Lee, W. et al. Role of flexible spacers in achieving photoinduced phase transitions of azobenzene-based liquid-crystalline polymers at room temperature. Polym J 56, 1061–1067 (2024). https://doi.org/10.1038/s41428-024-00946-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00946-1

Search

Quick links