Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Thermoresponsive behavior of dual hydrophilic diblock copolymers prepared via organotellurium-mediated living radical polymerization

Abstract

This study prepared dual thermoresponsive diblock copolymers (E95Nn; n = 93 and 291) comprising poly(ethylene glycol) ethyl ether acrylate (PeDEGA; E) and poly(N-isopropylacrylamide) (PNIPAM; N) blocks with different lower critical solution temperatures (LCSTs). E95Nn was prepared via organotellurium-mediated living radical polymerization through a one-pot synthesis method. Energy-dispersive X-ray spectroscopy revealed that tellurium residue at the polymer chain end was removed during purification via dialysis. The LCST of the PeDEGA was lower than that of PNIPAM. At temperatures below the LCST of PeDEGA, E95Nn dissolved as a single polymer chain (the unimer state). When an aqueous solution of E95Nn was heated, polymer micelles with a PeDEGA core and PNIPAM shells formed above the LCST of the PeDEGA. In pure water, 7–10 polymer micelles formed intermicellar aggregates. The polymer micelles encapsulated hydrophobic guest molecules into the hydrophobic core formed from the PeDEGA chains. Large intermicellar aggregates formed above the LCST of PNIPAM owing to hydrophobic interactions between the PNIPAM shells. It is expected that E95Nn polymer micelles can be applied as drug carriers for thermoresponsive controlled drug release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev. 2019;138:167–92.

    Article  CAS  PubMed  Google Scholar 

  2. Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymers. 2011;3:1215–42.

    Article  CAS  Google Scholar 

  3. Vancoillie G, Frank D, Hoogenboom R. Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci. 2014;39:1074–95.

    Article  CAS  Google Scholar 

  4. Tanaka F, Koga T, Kojima H, Winnik FM. Temperature- and tension-induced coil-globule transition of poly(N-isopropylacrylamide) chains in water and mixed solvent of water/methanol. Macromolecules. 2009;42:1321–30.

    Article  CAS  Google Scholar 

  5. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A. 1968;2:1441–55.

    Article  CAS  Google Scholar 

  6. Giaouzi D, Pispas S. Synthesis and self-assembly of thermoresponsive poly(N -isopropylacrylamide)- b -poly(oligo ethylene glycol methyl ether acrylate) double hydrophilic block copolymers. Polym Chem. 2019;57:1467–77.

    Article  CAS  Google Scholar 

  7. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  8. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjug Chem. 2010;21:797–802.

    Article  CAS  PubMed  Google Scholar 

  9. Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9:8073–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maeda H. Macromolecular therapeutics in cancer treatment: The EPR effect and beyond. J Control Release. 2012;164:138–44.

    Article  CAS  PubMed  Google Scholar 

  11. Goto A, Kwak Y, Fukuda T, Yamago S, Iida K, Nakajima M, et al. Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc. 2003;125:8720–1.

    Article  CAS  PubMed  Google Scholar 

  12. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules. 1998;31:5559–62.

    Article  CAS  Google Scholar 

  13. Kwak Y, Goto A, Tsujii Y, Murata Y, Komatsu K, Fukuda T. A kinetic study on the rate retardation in radical polymerization of styrene with addition−fragmentation chain transfer. Macromolecules. 2002;35:3026–9.

    Article  CAS  Google Scholar 

  14. Calitz FM, McLeary JB, McKenzie JM, Tonge MP, Klumperman B, Sanderson RD. Evidence for termination of intermediate radical species in RAFT-mediated polymerization. Macromolecules. 2003;36:9687–90.

    Article  CAS  Google Scholar 

  15. Yamago S. Development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. J Polym Sci A. 2006;44:1–12.

    Article  CAS  Google Scholar 

  16. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    Article  CAS  PubMed  Google Scholar 

  17. Kayahara E, Yamago S, Kwak Y, Goto A, Fukuda T. Optimization of organotellurium transfer agents for highly controlled living radical polymerization. Macromolecules. 2008;41:527–9.

    Article  CAS  Google Scholar 

  18. Kleks G, Holland DC, Porter J, Carroll AR. Natural products dereplication by diffusion ordered NMR spectroscopy (DOSY). Chem Sci. 2021;12:10930–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitano K, Ishihara K, Yusa SI. Preparation of a thermo-responsive drug carrier consisting of a biocompatible triblock copolymer and fullerene. J Mater Chem B. 2022;10:2551–60.

    Article  CAS  PubMed  Google Scholar 

  20. Matsumura K, Hyon SH. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. Biomaterials. 2009;30:4842–9.

    Article  CAS  PubMed  Google Scholar 

  21. Yamago S, Yamada T, Togai M, Ukai Y, Kayahara E, Pan N. Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: In situ generation of functionalized chain-transfer agents and selective omega-end-group transformations. Chem Eur J. 2009;15:1018–29.

    Article  CAS  PubMed  Google Scholar 

  22. Pelton R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J Colloid Interface Sci. 2010;348:673–4.

    Article  CAS  PubMed  Google Scholar 

  23. Jean B, Lee L-T, Cabane B. Interactions of sodium dodecyl sulfate with acrylamide – N -isopropylacrylamide) statistical copolymer. Colloid Polym Sci. 2000;278:764–70.

  24. Tanaka F, Okada Y. Theoretical study on the phase diagrams of associating polymers. Netsu Sokutei. 2005;32:178–85.

    CAS  Google Scholar 

  25. Pedersen JS, Gerstenberg MC. Scattering form factor of block copolymer micelles. Macromolecules. 1996;29:1363–65.

    Article  CAS  Google Scholar 

  26. Pedersen JS. Structure factors effects in small-angle scattering from block copolymer micelles and star polymers. J Chem Phys. 2001;114:2839–46.

    Article  CAS  Google Scholar 

  27. Kajiwara K, Burchard W, Gordon M. Angular distribution of Rayleigh scattering from randomly branched polycondensates. Br Polym J. 1970;2:110–5.

    Article  CAS  Google Scholar 

  28. Koberstein JT, Morra B, Stein RS. The determination of diffuse-boundary thicknesses of polymers by small-angle X-ray scattering. J Appl Crystallogr. 1980;13:34–45.

    Article  CAS  Google Scholar 

  29. Burchard W, Schmidt M, Stockmayer WH. Information on polydispersity and branching from combined quasi-elastic and intergrated scattering. Macromolecules. 1980;13:1265–72.

    Article  CAS  Google Scholar 

  30. Konishi T, Yoshizaki T, Yamakawa H. On the “universal constants” ρ and Φ. of flexible polymers. Macromolecules. 1991;24:5614–22.

    Article  CAS  Google Scholar 

  31. Zhang Y, Furyk S, Bergbreiter DE, Cremer PS. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J Am Chem Soc. 2005;127:14505–10.

    Article  CAS  PubMed  Google Scholar 

  32. Overath P, Träuble H. Phase transitions in cells, membranes, and lipids of Escherichia coli. Detection by fluorescent probes, light scattering, and dilatometry. Biochemistry. 1973;12:2625–34.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar N, Oqmhula K, Hongo K, Takagi K, Yusa SI, Rajan R, et al. Mechanistic insights and importance of hydrophobicity in cationic polymers for cancer therapy. J Mater Chem B. 2023;11:1456–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by KAKENHI grants (21H02005, 23H04088, 21H05027) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP12022359, JPJSBP120203510), the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (20,234,041), and the MEXT Promotion of Distinctive Joint Research Center Program (JPMXP 0621467946). The SAXS experiments were carried out at Spring-8 under the approval of JASRI. We would like to thank KJ Chemical for the gift of NIPAM. We would also like to thank Otsuka Chemical for the gift of BTEE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, M., Takahashi, R., Vu, T.N. et al. Thermoresponsive behavior of dual hydrophilic diblock copolymers prepared via organotellurium-mediated living radical polymerization. Polym J 56, 1129–1141 (2024). https://doi.org/10.1038/s41428-024-00952-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00952-3

Search

Quick links