Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Salt concentration dependency of the hydrated swollen structure of cholinephosphate-type polyzwitterion brushes

Abstract

The swollen thicknesses of zwitterionic polymer brushes with phosphorylcholine (PC), cholinephosphate (CP), sulfobetaine, and carboxybetaine groups were measured in aqueous sodium chloride (NaCl) or calcium chloride (CaCl2) solutions via force curve measurements by scanning probe microscopy (SPM) and neutron reflectivity measurements. PC and CP have different charge positions in betaine units consisting of ammonium and phosphate. The PC-type polymer brush did not distinctly reduce the swollen thickness in either the NaCl or CaCl2 solution, even at 1000 mM. However, the swollen thickness of the CP-type polymer brushes was clearly reduced in the aqueous CaCl2 solution. Unlike the phosphate of PC, which is located inside the betaine unit, the phosphate of CP tends to form insoluble calcium phosphate, resulting in the collapse of the brush structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Melcrová A, Pokorna S, Pullanchery S, Kohagen M, Jurkiewicz P, Hof M, et al. The complex nature of calcium cation interactions with phospholipid bilayers. Sci Rep. 2016;6:38035.

    PubMed  PubMed Central  Google Scholar 

  2. Xu N, Francis M, Cioffi DL, Stevens T. Studies on the resolution of subcellular free calcium concentrations: a technological advance. Focus on “Detection of differentially regulated subsarcolemmal calcium signals activated by vasoactive agonists in rat pulmonary artery smooth muscle cells. Am J Physiol Cell Physiol. 2014;306:C636–38.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Berridge MJ. Calcium signalling remodelling and disease. Biochem Soc Trans. 2012;40:297–309.

    PubMed  CAS  Google Scholar 

  4. Ito T, Ohnishi S. Ca2+-induced lateral phase separations in phosphatidic acid-phosphatidylcholine membranes. BBA-Biomembranes. 1974;352:29–37.

    PubMed  CAS  Google Scholar 

  5. Papahadjopoulos D, Vail WJ, Jacobson K, Poste G. Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. BBA-Biomembranes. 1975;394:483–91.

    PubMed  CAS  Google Scholar 

  6. Dluhy RA, Cameron DG, Mantsch HH, Mendelsohn R. Fourier transform infrared spectroscopic studies of the effect of calcium ions on phosphatidylserine. Biochemistry. 1983;22:6318–25.

    CAS  Google Scholar 

  7. Naga K, Rich NH, Keough KMW. Interaction between dipalmitoylphosphatidylglycerol and phosphatidylcholine and calcium. Thin Solid Films. 1994;244:841–4.

    Google Scholar 

  8. Mirza M, Guo Y, Arnold K, van Oss CJ, Ohki S. Hydrophobizing effect of cations on acidic phospholipid membranes. J Dispers Sci Technol. 1998;19:951–62.

    Google Scholar 

  9. Ohki S, Zschornig O. Ion-induced fusion of phosphatidic-acid vesicles and correlation between surface hydrophobicity and membrane-fusion. Chem Phys Lipids. 1993;65:193–204.

    PubMed  CAS  Google Scholar 

  10. Porasso RD, Cascales JJL. Study of the effect of Na+ and Ca2+ ion concentration on the structure of an asymmetric DPPC/ DPPC + DPPS lipid bilayer by molecular dynamics simulation. Colloids Surf B Biointerfaces. 2009;73:42–50.

    PubMed  CAS  Google Scholar 

  11. Tsai HHG, Lai W, Lin H, Lee J, Juang W, Tseng W. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: possible role in stalk formation during membrane fusion. BBA-Biomembranes. 2012;1818:2742–55.

    PubMed  CAS  Google Scholar 

  12. Akutsu H, Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry. 1981;20:7366–73.

    PubMed  CAS  Google Scholar 

  13. Boettcher JM, Davis-Harrison RL, Clay MC, Nieuwkoop AJ, Ohkubo YZ, Tajkhorshid E, et al. Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry. 2011;50:2264–73.

    PubMed  CAS  Google Scholar 

  14. Garidel P, Blume A, Hübner W. A fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. BBA-Biomembranes. 2000;1466:245–59.

    PubMed  CAS  Google Scholar 

  15. Garidel P, Blume A. Interaction of alkaline earth cations with the negatively charged phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol: a differential scanning and isothermal titration calorimetric study. Langmuir. 1999;15:5526–34.

    CAS  Google Scholar 

  16. Garidel P, Blume A. 1,2-Dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) monolayers: influence of temperature, pH, ionic strength and binding of alkaline earth cations. Chem Phys Lipids. 2005;138:50–59.

    PubMed  CAS  Google Scholar 

  17. Binder H, Zschörnig O. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids. 2002;115:39–61.

    PubMed  CAS  Google Scholar 

  18. Pedersen UR, Leidy C, Westh P, Peters GH. The effect of calcium on the properties of charged phospholipid bilayers. BBA-Biomembranes. 2006;1758:573–82.

    PubMed  CAS  Google Scholar 

  19. Sinn CG, Antonietti M, Dimova R. Binding of calcium to phosphatidylcholine-phosphatidylserine membranes. Colloids Surf A Physicochem Eng Aspects. 2006;282:410–9.

    Google Scholar 

  20. Buckland AG, Wilton DC. Anionic phospholipids, interfacial binding and the regulation of cell functions. BBA-Mol Cell Biol L. 2000;1483:199–216.

    CAS  Google Scholar 

  21. Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J. 1990;22:355–60.

    CAS  Google Scholar 

  22. Ueda T, Oshida H, Kurita K, Ishihara K, Nakabayashi N. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and Their blood compatibility. Polym J. 1992;24:1259–69.

    CAS  Google Scholar 

  23. Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir. 2008;24:8772–8.

    PubMed  CAS  Google Scholar 

  24. Takahashi A, Kato N, Nagasawa M. The osmotic pressure of polyelectrolyte in neutral salt solutions. J Phys Chem. 1970;74:944–6.

    CAS  Google Scholar 

  25. Nagasawa M, Eguchi Y. The charge effect in sedimentation. I. Polyelectrolytes. J Phys Chem. 1976;71:880–8.

    Google Scholar 

  26. Kudaibergenov SE Polyampholytes Synthesis, characterization, and application. Kluwer Academic/Plenum Publishers. New York. 2002;137–52.

  27. Kikuchi M, Terayama Y, Ishikawa T, Hoshino T, Kobayashi M, Ogawa H, et al. Chain dimension of polyampholytes in solution and immobilized brush states. Polym J. 2012;44:121–30.

    CAS  Google Scholar 

  28. Kobayashi M, Terayama Y, Kikuchi M, Takahara A. Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter. 2013;9:5138–48.

    CAS  Google Scholar 

  29. Shiomoto S, Inoue K, Higuchi H, Nishimura S, Takaba H, Tanaka M, et al. Characterization of hydration water bound to choline phosphate-containing polymers. Biomacromolecules. 2022;23:2999–3008.

    PubMed  CAS  Google Scholar 

  30. Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res Part A. 2019;107:933–43.

    CAS  Google Scholar 

  31. Chen T, Wang Y, Li Y, Nakaya T, Sakurai I. Studies on the synthesis and properties of novel phospholipid analogous polymers. J Appl Polym Sci. 1996;60:455–64.

    CAS  Google Scholar 

  32. Wang Y, Chen T, Kitamura M, Nakaya T. Syntheses and properties of a series of amphiphilic polyacrylamides bearing two long alkyl chains and phosphatidylcholine analogous groups in the side chains. J Polym Sci Part A Polym Chem. 1996;34:449–60.

    CAS  Google Scholar 

  33. Mihara S, Yamaguchi K, Kobayashi M. Intermolecular interaction of polymer brushes containing phosphorylcholine and inverse-phosphorylcholine. Langmuir. 2019;35:1172–80.

    PubMed  CAS  Google Scholar 

  34. Hu G, Parelkar SS, Emrick T. A facile approach to hydrophilic, reverse zwitterionic, choline phosphate polymers. Polym Chem. 2015;6:525–30.

    CAS  Google Scholar 

  35. Fujii S, Nishina K, Yamada S, Mochizuki S, Ohta N, Takahara A, et al. Micelles consisting of choline phosphate bearing Calix[4]arene lipids. Soft Matter. 2014;10:8216–23.

    PubMed  CAS  Google Scholar 

  36. Yu X, Liu Z, Janzen J, Chafeeva I, Horte S, Chen W, et al. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat Mater. 2012;11:468–76.

    PubMed  CAS  Google Scholar 

  37. Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE. ATRP synthesis of poly(2-(methacryloyloxy)ethyl choline phosphate): a multivalent universal biomembrane adhesive. Chem Commun. 2013;49:6831–3.

    CAS  Google Scholar 

  38. Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment. Biomaterials. 2014;35:278–86.

    PubMed  CAS  Google Scholar 

  39. Yang X, Li N, Constantinesco I, Yu K, Kizhakkedathu JN, Brooks DE. Choline phosphate functionalized cellulose membrane: A potential hemostatic dressing based on a unique bioadhesion mechanism. Acta Biomater. 2016;40:212–25.

    PubMed  CAS  Google Scholar 

  40. Chen X, Shang H, Cao S, Tan H, Li J. A zwitterionic surface with general cell-adhesive and protein-resistant properties. RSC Adv. 2015;5:76216–20.

    CAS  Google Scholar 

  41. Huang F, Ding C, Li J. Resisting protein but promoting cell adhesion by choline phosphate: A comparative study with phosphorylcholine. J Biores Bioproducts. 2018;3:3–8.

    CAS  Google Scholar 

  42. Xin Q, Sun T, Lu M, Wang Z, Song K, Hu D. et al. Poly[2-(methacryloyloxy)ethyl choline phosphate] functionalized polylactic acid film with improved degradation resistance both in vitro and in vivo. Colloid Surface B. 2020;185:110630

    CAS  Google Scholar 

  43. Zhao X, Xin Q, Yang D, Zhai X, Li J, Chen X. et al. Polylactic acid film surface functionalized by zwitterionic poly[2-(methacryloyloxy)ethyl choline phosphate] with improved biocompatibility. Colloid Surface B. 2022;214:112461

    CAS  Google Scholar 

  44. Wang Q, Wu H, Peng K, Jin H, Shao H, Wang Y, et al. Hydrophilic polymeric monoliths containing choline phosphate for separation science applications. Ana Chim Acta. 2018;999:184–9.

    CAS  Google Scholar 

  45. Lu M, Yu S, Wang Z, Xin Q, Sun T, Chen X, et al. Zwitterionic choline phosphate functionalized chitosan with antibacterial property and superior water solubility. Eur Polym J. 2020;134:109821.

    CAS  Google Scholar 

  46. Liu Y, Liu J. Cu2+-Directed liposome membrane fusion, positive-stain electron microscopy, and oxidation. Langmuir. 2018;34:7545–53.

    PubMed  CAS  Google Scholar 

  47. Wang W, Wang B, Ma X, Liu S, Shang X, Yu X. Tailor-made pH-responsive poly(choline phosphate) prodrug as a drug delivery system for rapid cellular internalization. Biomacromolecules. 2016;17:2223–32.

    PubMed  CAS  Google Scholar 

  48. Wang W, Wang B, Ma X, Liu S, Shang X, Yu X. Bioreducible polymer nanocarrier based on multivalent choline phosphate for enhanced cellular uptake and intracellular delivery of doxorubicin. ACS Appl Mater Interfaces. 2017;9:15986–994.

    PubMed  CAS  Google Scholar 

  49. Guo Z, Li S, Qu Y, Lu J, Xue W, Yu X, et al. Bio-membrane adhesive poly(choline phosphate L-glutamate)-based nanoparticles as vaccine delivery systems for cancer immunotherapy. Chem Eng J. 2021;417:127970.

    CAS  Google Scholar 

  50. Wang W, Jiang S, Li S, Yan X, Liu S, Mao X, et al. Functional choline phosphate lipids for enhanced drug delivery in cancer therapy. Chem Mater. 2021;33:774–81.

    Google Scholar 

  51. Zhang Y, Wang Y, Xin Q, Li M, Yu P, Luo J, et al. Zwitterionic choline phosphate conjugated folate-poly (ethylene glycol): a general decoration of erythrocyte membrane-coated nanoparticles for enhanced tumor-targeting drug delivery. J Mater Chem B. 2022;10:2497–503.

    PubMed  CAS  Google Scholar 

  52. Li S, Wang F, Li X, Chen J, Zhang X, Wang Y, et al. Dipole orientation matters: Longer-circulating choline phosphate than phosphocholine liposomes for enhanced tumor targeting. ACS Appl Mater Interfaces. 2017;9:17736–744.

    PubMed  CAS  Google Scholar 

  53. Xiao S, Ren B, Huang L, Shen M, Zhang Y, Zhong M, et al. Salt-responsive zwitterionic polymer brushes with anti-polyelectrolyte property. Curr Opin Chem Eng. 2018;19:86–93.

    Google Scholar 

  54. Leng C, Han X, Shao Q, Zhu Y, Li Y, Jiang S, et al. In situ probing of the surface hydration of zwitterionic polymer brushes: Structural and environmental effects. J Phys Chem C. 2014;118:15840–45.

    CAS  Google Scholar 

  55. Han X, Leng C, Shao Q, Jiang S, Chen Z. Absolute orientations of water molecules at zwitterionic polymer interfaces and interfacial dynamics after salt exposure. Langmuir. 2019;35:1327–34.

    PubMed  CAS  Google Scholar 

  56. Xiao S, Zhang Y, Shen M, Chen F, Fan P, Zhong M, et al. Structural dependence of salt-responsive polyzwitterionic brushes with an anti-polyelectrolyte effect. Langmuir. 2018;34:97–105.

    PubMed  CAS  Google Scholar 

  57. Xiang Y, Xu R, Leng Y. Molecular understanding of ion effect on polyzwitterion conformation in an aqueous environment. Langmuir. 2020;36:7648–57.

    PubMed  CAS  Google Scholar 

  58. Yamada NL, Torikai N, Mitamura K, Sagehashi H, Sato S, Seto H, et al. Design and Performance of Horizontal Type Neutron Reflectometer SOFIA at J-PARC/MLF. Euro Phys J Plus. 2011;126:108.

    Google Scholar 

  59. Mitamura K, Yamada NL, Sagehashi H, Torikai N, Arita H, Terada M, et al. Novel neutron reflectometer SOFIA at J-PARC/MLF for in-situ soft-interface characterization. Polymer J. 2013;45:100–8.

    CAS  Google Scholar 

  60. Pincus P. Colloid stabilization with grafted polyelectrolytes. Macromolecules. 1991;24:2912–9.

    CAS  Google Scholar 

  61. Borisov OV, Birshtein TM, Zhulina EB. Collapse of grafted polyelectrolyte layer. J Phys II. 1991;1:521–6.

    CAS  Google Scholar 

  62. Zhulina EB, Rubinstein M. Ionic strength dependence of polyelectrolyte brush thickness. Soft Matter. 2012;8:9376–83.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Alexander S. Polymer adsorption on small spheres. A scaling approach. J. Phys. 1977;38:977–81.

    CAS  Google Scholar 

  64. Fetters LJ, Lohsey DJ and Colby RH, Physical Properties of Polymers Handbook, 2007 Springer, New York, 2nd Ed., Chapter 25. pp450.

  65. Beattie DL, Mykhaylyk OO, Armes SP. Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media. Chem. Sci. 2020;11:10821–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Mondarte EAQ, Shi Y, Koh XQ, Feng X, Daniel D, Zhang X, et al. Unveiling the layered structure of sulfobetaine polymer brushes through bimodal atomic force microscopy. Macromolecules. 2023;56:5001–9.

    CAS  Google Scholar 

  67. Higaki Y, Inutsuka Y, Sakamaki T, Terayama Y, Takenaka A, Higaki K, et al. Effect of Charged Group Spacer Length on Hydration State in Zwitterionic Poly(sulfobetaine) Brushes. Langmuir. 2017;33:8404–12.

    PubMed  CAS  Google Scholar 

  68. Bockmann RA, Grubmuller H. Multistep binding of divalent cations to phospholipid bilayers: A molecular dynamics study. Angew Chem Int Ed. 2004;43:1021–4.

    Google Scholar 

  69. He Q, Qiao Y, Jimenez CM, Hackler R, Martinson ABF, Chen W, et al. Ion specificity influences on the structure of zwitterionic brushes. Macromolecules. 2023;56:1945–53.

    CAS  Google Scholar 

  70. Shao Q, He Y, Jiang S. Molecular dynamics simulation study of ion interactions with zwitterions. J Phys Chem B. 2011;115:8358–63.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research A (21H04741) and C (23K04843). M.K. thanks Yuki Kodama and Kaito Inoue (Graduate School of Engineering, Kogakuin University) for their technical support. NR measurements were performed under the research proposals of 2019B0084, 2020B0433, and 2021B0327.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all the authors.

Corresponding author

Correspondence to Motoyasu Kobayashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komiya, T., Yamada, N.L. & Kobayashi, M. Salt concentration dependency of the hydrated swollen structure of cholinephosphate-type polyzwitterion brushes. Polym J 57, 291–301 (2025). https://doi.org/10.1038/s41428-024-00991-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-024-00991-w

Search

Quick links