Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of polypyrrole and its derivative nanoparticles via a surfactant-free coupling polymerization protocol

Subjects

Abstract

Surfactant-free coupling polymerization of pyrrole (Py) and its derivatives, namely, N-methylpyrrole (MPy) and N-ethylpyrrole (EPy), was conducted using solid Fe(NO3)3 in the presence of an aqueous medium, resulting in aqueous dispersions of polymer particles. Dynamic light scattering studies revealed the production of colloidally stable polymer nanoparticles with diameters of 153–206 nm, 262–294 nm and 273–278 nm in aqueous media for the Py, MPy and EPy systems, respectively. The particle sizes of poly(N-methylpyrrole) (PMPy) and poly(N-ethylpyrrole) (PEPy) were larger than those of polypyrrole (PPy), which could be due to the greater hydrophobicity of MPy and EPy than Py. The particles could achieve colloidal stability through an electrostatic stabilization mechanism, as the polymerization process introduces cationic charges to the polymers via doping. Larger amounts of hydroxy and carbonyl groups were introduced into PMPy and PEPy because of the easier overoxidation of MPy and EPy due to their lower redox potentials than that of Py. Furthermore, the resulting particles could adsorb on oil‒water interfaces and work as effective Pickering-type emulsifiers. Suspension polymerization of vinyl monomer-in-water Pickering emulsions stabilized with PPy and PMPy nanoparticles resulted in the production of nanoparticle-coated polymer microparticles with diameters of 25 μm and 154 μm, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angeli A. Sopra il nero del pirrolo. Nota preliminare. Atti Accad Naz Lincei Cl Sci Fis Mat Re 1915;24:3–6.

    Google Scholar 

  2. Rasmussen SC. Conjugated and Conducting Organic Polymers: The First 150 Years. Chempluschem. 2020;85:1412–29.

    Article  CAS  PubMed  Google Scholar 

  3. Skotheim TA, Elsenbaumer RL, Gardiner JR. Handbook of Conducting Polymers, 2nd ed. Boulder: NetLibrary, Incorporated; 1998, pp. 1–1120.

  4. Guimard NK, Gomez N, Schmidt CE. Conducting Polymers in Biomedical Engineering. Prog Polym Sci. 2007;32:876–921.

    Article  CAS  Google Scholar 

  5. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10:2341–53.

    Article  CAS  PubMed  Google Scholar 

  6. Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface. 2006;3:741–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fielding LA, Hillier JK, Burchell MJ, Armes SP. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Commun. 2015;51:16886–99.

    Article  CAS  Google Scholar 

  8. Ramanavičius A, Ramanavičienė A, Malinauskas A. Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta. 2006;51:6025–37.

    Article  Google Scholar 

  9. Setka M, Drbohlavova J, Hubalek J. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors. 2017;17:562.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Melling D, Martinez JG, Jager EWH. Conjugated Polymer Actuators and Devices: Progress and Opportunities. Adv Mater. 2019;31:1808210.

    Article  Google Scholar 

  11. Jakobs RCM, Janssen LJJ, Barendrecht E. Hydroquinone oxidation and p-benzoquinone reduction at polypyrrole and poly-N-methylpyrrole electrodes. Electrochim Acta. 1985;30:1313–21.

    Article  CAS  Google Scholar 

  12. Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev. 2018;118:6766–843.

    Article  CAS  PubMed  Google Scholar 

  13. Li F, Winnik MA, Matvienko A, Mandelis A. Polypyrrole Nanoparticles as a Thermal Transducer of NIR Radiation in Hot-Melt Adhesives. J Mater Chem. 2007;17:4309–15.

    Article  CAS  Google Scholar 

  14. Chen M, Fang X, Tang S, Zheng N. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem Commun. 2012;48:8934–6.

    Article  CAS  Google Scholar 

  15. Takeuchi M, Kawashima H, Imai H, Fujii S, Oaki Y. Quantitative detection of near-infrared (NIR) light using organic layered composites. J Mater Chem C. 2019;7:4089–95.

    Article  CAS  Google Scholar 

  16. Liu Y, Xiong H, Huang H, Li L, Huang Y, Yu X. Fabrication of poly(N-methylpyrrole) nanotubes for detection of dopamine. Polym Bull. 2018;75:2357–68.

    Article  CAS  Google Scholar 

  17. Prezyna LA, Qiu YJ, Reynolds JR, Wnek GE. Interaction of cationic polypeptides with electroactive polypyrrole/poly(styrenesulfonate) and poly(N-methylpyrrole)/poly(styrenesulfonate) films. Macromolecules. 1991;24:5283–7.

    Article  CAS  Google Scholar 

  18. Elibal F, Gumustekin S, Ozkazanc H, Ozkazanc E. Poly(N-methylpyrrole) with high antibacterial activity synthesized via interfacial polymerization method. J Mol Struct. 2021;1242:130712.

    Article  CAS  Google Scholar 

  19. Duran B, Bereket G. Cyclic Voltammetric Synthesis of Poly(N-methyl pyrrole) on Copper and Effects of Polymerization Parameters on Corrosion Performance. Ind Eng Chem Res. 2012;51:5246–55.

    Article  CAS  Google Scholar 

  20. Kou C-T, Liou T-R. Characterization of metal—oxide—semiconductor field-effect transistor (MOSFET) for polypyrrole and poly (N-alkylpyrrole)s prepared by electrochemical synthesis. Synth Met. 1996;82:167–73.

    Article  CAS  Google Scholar 

  21. Hao L, Dong C, Yu D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers. 2024;16:2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bjorklund RB, Liedberg B. Electrically conducting composites of colloidal polypyrrole and methylcellulose. J Chem Soc Chem Commun. 1986;1293–5.

  23. Markham G, Obey TM, Vincent B. The preparation and properties of dispersions of electrically-conducting polypyrrole particles. Colloids Surf. 1990;51:239–53.

    Article  CAS  Google Scholar 

  24. Armes SP, Aldissi M. Preparation and characterization of colloidal dispersions of polypyrrole using poly(2-vinyl pyridine)-based steric stabilizers. Polymer. 1990;31:569–74.

    Article  CAS  Google Scholar 

  25. Mrkic J, Saunders BR. Microgel Particles as a Matrix for Polymerization: A Study of Poly(N-isopropylacrylamide)-Poly(N-methylpyrrole) Dispersions. J Colloid Interface Sci. 2000;222:75–82.

    Article  CAS  PubMed  Google Scholar 

  26. Alizadeh N, Akbarinejad A. Soluble fluorescent polymeric nanoparticles based on pyrrole derivatives: synthesis, characterization and their structure dependent sensing properties. J Mater Chem C. 2015;3:9910–20.

    Article  CAS  Google Scholar 

  27. Armes SP. Conducting polymer colloids. Curr Opin Colloid Interface Sci. 1996;1:214–20.

    Article  CAS  Google Scholar 

  28. Fujii S. Synthesis of Conductive Polymer-Based Composite Particles. Chem Lett. 2023;52:631–9.

    Article  CAS  Google Scholar 

  29. Kawashima H, Mayama H, Nakamura Y, Fujii S. Hydrophobic Polypyrroles Synthesized by Aqueous Chemical Oxidative Polymerization and Their Use as Light-Responsive Liquid Marble Stabilizers. Polym Chem. 2017;8:2609–18.

    Article  CAS  Google Scholar 

  30. Asaumi Y, Rey M, Oyama K, Vogel N, Hirai T, Nakamura Y, et al. Effect of Stabilizing Particle Size on the Structure and Properties of Liquid Marbles. Langmuir. 2020;36:13274–84.

    Article  CAS  PubMed  Google Scholar 

  31. Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle Monolayer-Stabilized Light-Sensitive Liquid Marbles from Polypyrrole-Coated Microparticles. Langmuir. 2020;36:2695–706.

    Article  CAS  PubMed  Google Scholar 

  32. Du L, Gao P, Meng Y, Liu Y, Le S, Yu C. Highly Efficient Removal of Cr(VI) from Aqueous Solutions by Polypyrrole/Monodisperse Latex Spheres. ACS Omega. 2020;5:6651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muhammad Ekramul Mahmud HN, Huq AKO, Yahya RB. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. RSC Adv. 2016;6:14778–91.

    Article  CAS  Google Scholar 

  34. Au KM, Lu Z, Matcher SJ, Armes SP. Polypyrrole nanoparticles: a potential optical coherence tomography contrast agent for cancer imaging. Adv Mater. 2011;23:5792–5.

    Article  CAS  PubMed  Google Scholar 

  35. Pope MR, Armes SP, Tarcha PJ. Specific Activity of Polypyrrole Nanoparticulate Immunoreagents: Comparison of Surface Chemistry and Immobilization Options. Bioconjugate Chem. 1996;7:436–44.

    Article  CAS  Google Scholar 

  36. Kim SW, Cho HG, Park CR. Fabrication of unagglomerated polypyrrole nanospheres with controlled sizes from a surfactant-free emulsion system. Langmuir. 2009;25:9030–6.

  37. Vetter CA, Suryawanshi A, Lamb JR, Law B, Gelling VJ. Novel synthesis of stable polypyrrole nanospheres using ozone. Langmuir. 2011;27:13719–28.

  38. Cui Z, Coletta C, Dazzi A, Lefrancois P, Gervais M, Neron S, et al. Radiolytic method as a novel approach for the synthesis of nanostructured conducting polypyrrole. Langmuir. 2014;30:14086–94.

  39. Liao Y, Li X-G, Kaner RB. Facile Synthesis of Water-Dispersible Conducting Polymer Nanospheres. ACS Nano. 2010;4:5193–202.

  40. Liao Y, Wang X, Qian W, Li Y, Li X, Yu DG. Bulk synthesis, optimization, and characterization of highly dispersible polypyrrole nanoparticles toward protein separation using nanocomposite membranes. J Colloid Interface Sci. 2012;386:148–57.

  41. Li X-G, Li A, Huang M-R, Liao Y, Lu Y-G. Efficient and Scalable Synthesis of Pure Polypyrrole Nanoparticles Applicable for Advanced Nanocomposites and Carbon Nanoparticles. J Phys Chem C. 2010;114:19244–55.

  42. Atsuta Y, Takeuchi K, Shioda N, Hamada W, Hirai T, Nakamura Y, et al. Colloidally Stable Polypyrrole Nanoparticles Synthesized by Surfactant-Free Coupling Polymerization. Langmuir. 2023;39:14984–95.

    Article  CAS  PubMed  Google Scholar 

  43. Muramatsu R, Oaki Y, Kuwabara K, Hayashi K, Imai H. Solvent-free synthesis, coating and morphogenesis of conductive polymer materials through spontaneous generation of activated monomers. Chem Commun. 2014;50:11840–3.

    Article  CAS  Google Scholar 

  44. Kuwabara K, Masaki H, Imai H, Oaki Y. Substrate coating by conductive polymers through spontaneous oxidation and polymerization. Nanoscale. 2017;9:7895–7900.

    Article  CAS  PubMed  Google Scholar 

  45. K N, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021;11:5659–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lovell PA, El-Aasser MS. Emulsion Polymerization and Emulsion Polymers. Wiley: New York; 1997, pp. 1–826.

  47. Hansen CM. The three dimensional solubility parameter - key to paint component affinities: I. Solvents, plasticizers, polymers, and resins. J Paint Technol. 1967;39:104–17.

    CAS  Google Scholar 

  48. Pei Q, Qian R. Protonation and deprotonation of polypyrrole chain in aqueous solutions. Synth Met. 1991;45:35–48.

    Article  CAS  Google Scholar 

  49. Zhang X, Bai. Surface Electric Properties of Polypyrrole in Aqueous Solutions. Langmuir. 2003;19:10703–9.

    Article  CAS  Google Scholar 

  50. Greenwood R. Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv Colloid Interface Sci. 2003;106:55–81.

    Article  CAS  PubMed  Google Scholar 

  51. Feeney PJ, Napper DH, Gilbert RG. Surfactant-free emulsion polymerizations: predictions of the coagulative nucleation theory. Macromolecules. 1987;20:2922–30.

    Article  CAS  Google Scholar 

  52. Lovell PA, Schork FJ. Fundamentals of Emulsion Polymerization. Biomacromolecules. 2020;21:4396–441.

    Article  CAS  PubMed  Google Scholar 

  53. Ayad MM. In-situ polypyrrole film formation using ferric nitrate as oxidizing agent. J Mater Sci Lett. 2003;22:1577–9.

    Article  CAS  Google Scholar 

  54. Fujii S, Aichi A, Akamatsu K, Nawafune H, Nakamura Y. One-step synthesis of polypyrrole-coated silver nanocomposite particles and their application as a coloured particulate emulsifier. J Mater Chem. 2007;17:3777–9.

    Article  CAS  Google Scholar 

  55. Omastová M, Trchová M, Kovářová J, Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met. 2003;138:447–55.

    Article  Google Scholar 

  56. Ćirić-Marjanović G, Mentus S, Pašti I, Gavrilov N, Krstić J, Travas-Sejdic J, et al. Synthesis, Characterization, and Electrochemistry of Nanotubular Polypyrrole and Polypyrrole-Derived Carbon Nanotubes. J Phys Chem C. 2014;118:14770–84.

    Article  Google Scholar 

  57. Tabačiarová J, Mičušík M, Fedorko P, Omastová M. Study of Polypyrrole Aging by XPS, FTIR and Conductivity Measurements. Polym Degrad Stab. 2015;120:392–401.

    Article  Google Scholar 

  58. Seike M, Uda M, Suzuki T, Minami H, Higashimoto S, Hirai T, et al. Synthesis of Polypyrrole and Its Derivatives as a Liquid Marble Stabilizer via a Solvent-Free Chemical Oxidative Polymerization Protocol. ACS Omega. 2022;7:13010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lei J, Cai Z, Martin CR. Effect of Reagent Concentrations Used to Synthesize Polypyrrole on the Chemical Characteristics and Optical and Electronic Properties of the Resulting Polymer. Synth Met. 1992;46:53–69.

    Article  CAS  Google Scholar 

  60. Mazumder A, Sebastian E, Hariharan M. Solvent dielectric delimited nitro-nitrito photorearrangement in a perylenediimide derivative. Chem Sci. 2022;13:8860–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liang W, Lei J, Martin CR. Effect of Synthesis Temperature on the Structure, Doping Level and Charge-Transport Properties of Polypyrrole. Synth Met. 1992;52:227–39.

    Article  Google Scholar 

  62. Malitesta C, Losito I, Sabbatini L, Zambonin PG. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc Relat Phenom. 1995;76:629–34.

    Article  CAS  Google Scholar 

  63. Ramsden W, Gotch F. Separation of Solids in the Surface-Layers of Solutions and ‘Suspensions’ (Observations on Surface-Membranes, Bubbles, Emulsions, and Mechanical Coagulation).-Preliminary Account. Proc R Soc Lond. 1904;72:156–64.

    Article  Google Scholar 

  64. Pickering SU. CXCVI.—Emulsions. J Chem Soc Trans. 1907;91:2001–21.

    Article  Google Scholar 

  65. Binks BP, Horozov TS. Colloidal Particles at Liquid Interfaces. Cambridge, New York; Cambridge University Press: 2006, pp. 1–503.

  66. Jiang H, Sheng Y, Ngai T. Pickering Emulsions: Versatility of Colloidal Particles and Recent Applications. Curr Opin Colloid Interface Sci. 2020;49:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fameau A-L, Fujii S. Stimuli-Responsive Liquid Foams: From Design to Applications. Curr Opin Colloid Interface Sci. 2020;50:101380.

    Article  CAS  Google Scholar 

  68. Subramaniam AB, Abkarian M, Mahadevan L, Stone HA. Colloid Science: Non-Spherical Bubbles. Nature. 2005;438:930.

    Article  PubMed  Google Scholar 

  69. Subramaniam AB, Abkarian M, Stone HA. Controlled assembly of jammed colloidal shells on fluid droplets. Nat Mater. 2005;4:553–6.

    Article  CAS  PubMed  Google Scholar 

  70. Fujii S, Nakamura Y. Stimuli-Responsive Bubbles and Foams Stabilized with Solid Particles. Langmuir. 2017;33:7365–79.

    Article  CAS  PubMed  Google Scholar 

  71. Fujii S. Foams/bubbles stabilized with polymer particles. Curr Opin Colloid Interface Sci. 2024;72:101808.

    Article  CAS  Google Scholar 

  72. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Nano Shioda and Ms. Wakana Hamada (Keio Univ.) for conducting SEM and TEM studies.

Funding

This work was supported by Grants-in-Aid for Scientific Research (B) (JSPS KAKENHI Grant Numbers JP20H02803 and JP24K01562), a JSPS-DAAD Bilateral Joint Research Project (Grant Numbers JPJSBP120203509 and JPJSBP120223510), Challenging Research (Pioneering) (JSPS KAKENHI Grant Number JP22K19071), Scientific Research on Innovative Areas “New Polymeric Materials Based on Element-Blocks (JSPS KAKENHI Grant Number JP15H00767)” and “Aquatic Functional Materials: Creation of New Materials Science for Environment-Friendly and Active Functions (JSPS KAKENHI Grant Number JP22H04559)”, and a Private University Research Branding Project (Type A: Osaka Industrial Technology Platform).

Author information

Authors and Affiliations

Authors

Contributions

Yuya Atsuta: Methodology, Investigation. Kazusa Takeuchi: Methodology, Investigation. Tomoki Sakuma: Methodology. Koji Mitamura: Methodology. Seiji Watase: Methodology. Yuan Song: Methodology. Tomoyasu Hirai: Methodology, Investigation. Yoshinobu Nakamura: Methodology, Investigation. Yuya Oaki: Conceptualization, Methodology, Investigation, Writing - Review & Editing, Supervision, Project administration, Funding acquisition. Syuji Fujii: Conceptualization, Methodology, Investigation, Writing - Original Draft, Writing - Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding authors

Correspondence to Yuya Oaki or Syuji Fujii.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atsuta, Y., Takeuchi, K., Sakuma, T. et al. Synthesis of polypyrrole and its derivative nanoparticles via a surfactant-free coupling polymerization protocol. Polym J 57, 723–735 (2025). https://doi.org/10.1038/s41428-025-01026-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01026-8

This article is cited by

Search

Quick links