Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Discovering the micellization of linear A-b-(B-alt-C)2-b-A multiblock terpolymers in selective solvents

Abstract

The self-assembly of ABC amphiphilic multiblock terpolymers into multicompartment micelles in dilute solutions has gained significant attention. In this study, we employed the three-dimensional (3D) self-consistent field theory (SCFT) method to explore the micellization behavior of amphiphilic linear A-b-(B-alt-C)₂-b-A multiblock terpolymers in a solvent selective for the terminal A block. A variety of intriguing micellar structures were identified, including B- and C-disk segmented vesicles, B- and C-toroidal packing within a tubular structure, BC-segmented toroidal micelles, infinite BC-segmented cylindrical micelles, and BC-mixed toroidal micelles. Owing to the connection of blocks B and C with block A, the segmented arrangement of layers B and C follows the axial direction of the structures. As the volume fraction of the A block (fA) decreases, a structural transition from vesicles to micelles occurs in the linear A-b-(B-alt-C)₂-b-A system, in contrast with the behavior of A(BC)n multiblock terpolymers, which transition from micelles to vesicles. The SCFT method has proven to be an effective tool for identifying molecular architectures with the potential to self-assemble into complex, technologically valuable hierarchical structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu H, Gopinadhan M, Osuji CO. Directed self-assembly of block copolymers: a tutorial review of strategies for enabling nanotechnology with soft matter. Soft Matter. 2014;10:3867–89.

    Article  CAS  PubMed  Google Scholar 

  2. Xu C, Chen C, Jiang J, Zhao C, Ma Y, Yang W. Monodisperse styrene-maleic anhydride-isoprene terpolymer microspheres with tunable crosslinking density prepared by self-stabilized precipitation polymerization. ACS Appl Polym Mater. 2022;4:7363–72.

    Article  CAS  Google Scholar 

  3. Liu S, Yang Y, Zhang L, Xu J, Zhu J. Recent progress in responsive photonic crystals of block copolymers. J Mater Chem C. 2020;8:16633–47.

    Article  CAS  Google Scholar 

  4. Li M, Ober CK. Block copolymer patterns and templates. Mater Today. 2006;9:30–39.

    Article  CAS  Google Scholar 

  5. Rahman ZU, Wei N, Li ZX, Sun WX, Wang DA. Preparation of hollow mesoporous silica nanospheres: controllable template synthesis and their application in drug delivery. N. J Chem. 2017;41:14122–9.

    Article  CAS  Google Scholar 

  6. Cho EB, Choi E, Yang S, Jaroniec M. Hollow mesoporous organosilica nanospheres templated with flower-like micelles of pentablock copolymers. J Colloid Interface Sci. 2018;528:124–34.

    Article  CAS  PubMed  Google Scholar 

  7. Sunwoo Y, Karunakaran G, Cho EB. Hollow mesoporous silica nanospheres using pentablock copolymer micelle templates. Ceram Int. 2021;47:13351–62.

    Article  CAS  Google Scholar 

  8. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2012;64:37–48.

    Article  Google Scholar 

  9. Akash MSH, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev. 2014;54:573–97.

    Article  CAS  Google Scholar 

  10. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release. 2017;258:226–53.

    Article  CAS  PubMed  Google Scholar 

  11. Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G. Block copolymer nanostructures. Nano Today. 2008;3:38–46.

    Article  CAS  Google Scholar 

  12. Moughton AO, Hillmyer MA, Lodge TP. Multicompartment block polymer micelles. Macromolecules. 2012;45:2–19.

    Article  CAS  Google Scholar 

  13. Matsen MW, Schick M. Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett. 1994;72:2660–3.

    Article  CAS  PubMed  Google Scholar 

  14. Matsen MW. The standard Gaussian model for block copolymer melts. J Phys Condens Matter. 2002;14:R21–R47.

    Article  CAS  Google Scholar 

  15. Tyler CA, Morse DC. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys Rev Lett. 2005;94:208302.

    Article  PubMed  Google Scholar 

  16. Tang P, Qiu F, Zhang HD, Yang YL. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers. Phys Rev E. 2004;69:031803.

    Article  Google Scholar 

  17. Tang P, Qiu F, Zhang HD, Yang YL. Morphology and phase diagram of complex block copolymers:  ABC star triblock copolymers. Cli J Phys Chem B 2004;108:8434–8.

    Article  CAS  Google Scholar 

  18. Ye XG, Shi TF, Lu ZY, Zhang CX, Sun ZY, An LJ. Study of morphology and phase diagram of π-shaped abc block copolymers using self-consistent-field theory. Macromolecules. 2005;38:8853–7.

    Article  CAS  Google Scholar 

  19. Tyler CA, Qin J, Bates FS, Morse DC. SCFT study of nonfrustrated ABC triblock copolymer melts. Macromolecules. 2007;40:4654–68.

    Article  CAS  Google Scholar 

  20. Guo ZJ, Zhang GJ, Qiu F, Zhang HD, Yang YL, Shi AC. Discovering ordered phases of block copolymers: new results from a generic fourier-space approach. Phys Rev Lett. 2008;101:028301.

    Article  PubMed  Google Scholar 

  21. Yu JM, Dubois P, Jérôme R. Poly[methyl methacrylate (M)-b-styrene (S)-b-butadiene (B)-b-S-b-M] pentablock copolymers: synthesis, morphology, and properties. Macromolecules. 1997;30:4984–94.

    Article  CAS  Google Scholar 

  22. Meuler AJ, Fleury G, Hillmyer MA, Bates FS. Structure and mechanical properties of an O70 (Fddd) network-forming pentablock terpolymer. Macromolecules. 2008;41:5809–17.

    Article  CAS  Google Scholar 

  23. Meuler AJ Network morphologies in monodisperse and polydisperse multiblock terpolymers. Ph.D. dissertation, University of Minnesota, Minneapolis, 2009.

  24. Gao J, Lv C, An K, Gu XY, Nie JJ, Li YJ, Xu JT, Du BY. Observation of double gyroid and hexagonally perforated lamellar phases in ABCBA pentablock terpolymers. Macromolecules. 2020;53:9641–53.

    Article  CAS  Google Scholar 

  25. Kim D, Sun R, Tocchetto R, Willis C, Krutzer B, Beyer FL, Elabd YA. Poly(ionic liquid) ABC triblock and ABCBA pentablock terpolymer electrolytes for lithium metal batteries. RSC Appl Polym. 2024;2:1091–103.

    Article  CAS  Google Scholar 

  26. Liu HH, Huang CI, Shi AC. Self-assembly of linear ABCBA pentablock terpolymers. Macromolecules. 2015;48:6214–23.

    Article  CAS  Google Scholar 

  27. Liu HH, Huang CI, Shi AC. Exploring ordered structures by varying symmetric interaction parameters of non-frustrated ABCBA linear pentablock terpolymers in the melt. J Polym Res. 2023;30:300.

    Article  CAS  Google Scholar 

  28. Lo YT, Chang CH, Liu HH, Huang CI, Shi AC. Self-assembly of nonfrustrated ABCBA linear pentablock terpolymers. Macromol Theory Simul. 2021;30:2100014.

    Article  CAS  Google Scholar 

  29. Nagata Y, Masuda J, Noro A, Cho DY, Takano A, Matsushita Y. Preparation and characterization of a styrene−isoprene undecablock copolymer and its hierarchical microdomain structure in bulk. Macromolecules. 2005;38:10220–5.

    Article  CAS  Google Scholar 

  30. Masuda J, Takano A, Nagata Y, Noro A, Matsushita Y. Nanophase-separated synchronizing structure with parallel double periodicity from an undecablock terpolymer. Phys Rev Lett. 2006;97:098301.

    Article  PubMed  Google Scholar 

  31. Masuda J, Takano A, Suzuki J, Nagata Y, Noro A, Hayashida K, Matsushita Y. Composition-dependent morphological transition of hierarchically-ordered structures formed by multiblock terpolymers. Macromolecules. 2007;40:4023–7.

    Article  CAS  Google Scholar 

  32. Fleury G, Bates FS. Perpendicular lamellae in parallel lamellae in a hierarchical CECEC-P hexablock terpolymer. Macromolecules. 2009;42:1691–4.

    Article  CAS  Google Scholar 

  33. Fleury G, Bates FS. Structure and properties of hexa- and undecablock terpolymers with hierarchical molecular architectures. Macromolecules. 2009;42:3598–610.

    Article  CAS  Google Scholar 

  34. Alfonzo CG, Fleury G, Chaffin KA, Bates FS. Synthesis and characterization of elastomeric heptablock terpolymers structured by crystallization. Macromolecules. 2010;43:5295–305.

    Article  CAS  Google Scholar 

  35. Faber M, Voet VSD, ten Brinke G, Loos K. Preparation and self-assembly of two-length-scale A-b-(B-b-A)n-b-B multiblock copolymers. Soft Matter. 2012;8:4479–85.

    Article  Google Scholar 

  36. Nap RJ, Erukhimovich I, ten Brinke G. Self-assembling block copolymer systems involving competing length scales:  a route toward responsive materials. Macromolecules. 2004;37:4296–303.

    Article  CAS  Google Scholar 

  37. Nap RJ, Sushko N, Erukhimovich I, ten Brinke G. Double periodic lamellar-in-lamellar structure in multiblock copolymer melts with competing length scales. Macromolecules. 2006;39:6765–70.

    Article  CAS  Google Scholar 

  38. Subbotin A, Klymko T, ten Brinke G. Lamellar-in-lamellar structure of A-b-(B-b-C)m-b-B-b-A multiblock copolymers. Macromolecules. 2007;40:2915–8.

    Article  CAS  Google Scholar 

  39. Klymko T, Subbotin A, ten Brinke G. Lamellar-in-lamellar structure of binary linear multiblock copolymers. J Chem Phys. 2008;129:114902.

    Article  CAS  PubMed  Google Scholar 

  40. Huang CI, Chen CM. Hierarchical structure-within-structure morphologies in A2-star-(B-alt-C) molecules. ChemPhysChem. 2007;8:2588–94.

    Article  CAS  PubMed  Google Scholar 

  41. Li WH, Shi AC. Theory of hierarchical lamellar structures from A(BC)nBA multiblock copolymers. Macromolecules. 2009;42:811–9.

    Article  CAS  Google Scholar 

  42. Xu YC, Li WH, Qiu F, Yang YL, Shi AC. The influence of volume fractions on the phase behaviors of linear A(BC)nBA’multiblock terpolymers. Phys Chem Chem Phys. 2011;13:12421–8.

    Article  CAS  PubMed  Google Scholar 

  43. Xu YC, Li WH, Qiu F, Yang YL, Shi AC. Stability of perpendicular and parallel lamellae within lamellae of multiblock terpolymers. J Phys Chem B. 2010;114:14875–83.

    Article  CAS  PubMed  Google Scholar 

  44. Wang LQ, Lin JP, Zhang L. Hierarchically ordered microstructures self-assembled from A(BC)n multiblock copolymers. Macromolecules. 2010;43:1602–9.

    Article  CAS  Google Scholar 

  45. Yu GE, Eisenberg A. Multiple morphologies formed from an amphiphilic ABC triblock copolymer in solution. Macromolecules. 1998;31:5546–9.

    Article  CAS  Google Scholar 

  46. Talingting MR, Munk P, Webber SE, Tuzar Z. Onion-type micelles from Polystyrene-block-poly(2-vinylpyridine) and Poly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules. 1999;32:1593–601.

    Article  CAS  Google Scholar 

  47. Gohy JF, Willet N, Varshney S, Zhang JX, Jérôme R. Core–Shell–Corona micelles with a responsive shell. Angew Chem Int Ed. 2001;40:3214–6.

    Article  CAS  Google Scholar 

  48. Kubowicz S, Baussard JF, Lutz JF, Thünemann AF, von Berlepsch H, Laschewsky A. Multicompartment micelles formed by self-assembly of linear ABC triblock copolymers in aqueous medium. Angew Chem Int Ed. 2005;44:5262–5.

    Article  CAS  Google Scholar 

  49. Hu J, Njikang G, Liu G. Twisted ABC triblock copolymer cylinders with segregated A and C coronal chains. Macromolecules. 2008;41:7993–9.

    Article  CAS  Google Scholar 

  50. Skrabania K, Laschewsky A, von, Berlepsch H, Böttcher C. Synthesis and micellar self-assembly of ternary hydrophilic−lipophilic−fluorophilic block copolymers with a linear PEO chain. Langmuir. 2009;25:7594–601.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang X, Zhang G, Narain R, Liu S. Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir. 2009;25:2046–54.

    Article  CAS  PubMed  Google Scholar 

  52. Skrabania K, von, Berlepsch H, Böttcher C, Laschewsky A. Synthesis of ternary, hydrophilic-lipophilic-fluorophilic block copolymers by consecutive RAFT polymerizations and their self-assembly into multicompartment micelles. Macromolecules. 2010;43:271–81.

    Article  CAS  Google Scholar 

  53. Walther A, Barner-Kowollik C, Müller AHE. Mixed, multicompartment, or janus micelles? a systematic study of thermoresponsive bis-hydrophilic block terpolymers. Langmuir. 2010;26:12237–46.

    Article  CAS  PubMed  Google Scholar 

  54. Erhardt R, Zhang MF, Böker A, Zettl H, Abetz C, Frederik P, Krausch G, Abetz V, Müller AHE. Amphiphilic Janus micelles with polystyrene and poly(methacrylic acid) hemispheres. J Am Chem Soc. 2003;125:3260–7.

    Article  CAS  PubMed  Google Scholar 

  55. Liu YF, Abetz V, Müller AHE. Janus cylinders. Macromolecules. 2003;36:7894–8.

    Article  CAS  Google Scholar 

  56. Ma ZW, Yu HZ, Jiang W. Bump-surface multicompartment micelles from a linear ABC triblock copolymer: a combination study by experiment and computer simulation. J Phys Chem B. 2009;113:3333–8.

    Article  CAS  PubMed  Google Scholar 

  57. Wang LQ, Lin JP. Discovering multicore micelles: insights into the self-assembly of linear ABC terpolymers in midblock-selective solvents. Soft Matter. 2011;7:3383–91.

    Article  CAS  Google Scholar 

  58. Laschewsky A. Polymerized micelles with compartments. Curr Opin Colloid Interface Sci. 2003;8(3):274–81.

    Article  CAS  Google Scholar 

  59. Brannan AK, Bates FS. ABCA tetrablock copolymer vesicles. Macromolecules. 2004;37(23):8816–9.

    Article  CAS  Google Scholar 

  60. Thünemann AF, Kubowicz S, von Berlepsch H, Möhwald H. Two-compartment micellar assemblies obtained via aqueous self-organization of synthetic polymer building blocks. Langmuir. 2006;22:2506–10.

    Article  PubMed  Google Scholar 

  61. Beheshti N, Zhu K, Kjøniksen AL, Knudsen KD, Nyström B. Characterization of temperature-induced association in aqueous solutions of charged ABCBA-type pentablock tercopolymers. Soft Matter. 2011;7:1168–75.

    Article  CAS  Google Scholar 

  62. Cui J, Jiang W. Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: A Monte Carlo study. Langmuir. 2011;27:10141–7.

    Article  CAS  PubMed  Google Scholar 

  63. Ren T, Lei X, Yuan W. Synthesis and self-assembly of double-hydrophilic pentablock copolymer with pH and temperature responses via sequential atom transfer radical polymerization. Mater Lett. 2012;67:383–6.

    Article  CAS  Google Scholar 

  64. Abandansari HS, Aghaghafari E, Nabid MR, Niknejad H. Preparation of injectable and thermoresponsive hydrogel based on penta-block copolymer with improved sol stability and mechanical properties. Polymer. 2013;54:1329–40.

    Article  CAS  Google Scholar 

  65. Tan H, Wang Z, Li J, Pan Z, Ding M, Fu Q. An approach for the sphere-to-rod transition of multiblock copolymer micelles. ACS Macro Lett. 2013;2:146–51.

    Article  CAS  PubMed  Google Scholar 

  66. Huang CI, Liao CH, Lodge TP. Multicompartment micelles from A2-star-(B-alt-C) block terpolymers in selective solvents. Soft Matter. 2011;7:5638–47.

    Article  CAS  Google Scholar 

  67. Hsu YC, Huang CI, Li WH, Qiu F, Shi AC. Micellization of linear A-b-(B-alt-C)n multiblock terpolymers in A-selective solvents. Polymer. 2013;54:431–9.

    Article  CAS  Google Scholar 

  68. Huysecom AS, Glorieux C, Thoen J, Thielemans W, Fustin CA, Moldenaers P, Cardinaels R. Phase behavior of medium-length hydrophobically associating PEO-PPO multiblock copolymers in aqueous media. J Colloid Interface Sci. 2023;641:521–38.

    Article  CAS  PubMed  Google Scholar 

  69. Khan M, Guimarães TR, Choong K, Moad G, Perrier S, Zetterlund PB. RAFT emulsion polymerization for (multi)block copolymer synthesis: overcoming the constraints of monomer order. Macromolecules. 2021;54:736–46.

    Article  CAS  Google Scholar 

  70. Tzeremes G, Rasmussen KO, Lookman T, Saxena A. Efficient computation of the structural phase behavior of block copolymers. Phys Rev E. 2002;65:041806.

    Article  CAS  Google Scholar 

  71. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2. 1976;72:1525–68.

    Article  CAS  Google Scholar 

  72. Cui H, Chen Z, Wooley KL, Pochan DJ. Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter. 2009;5:1269–78.

    Article  CAS  Google Scholar 

  73. Mukerjee P. Size distribution of small and large micelles. Multiple equilibrium analysis. J Phys Chem. 1972;76:565–70.

    Article  CAS  Google Scholar 

  74. Porte G, Appell J. Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions. J Phys Chem. 1981;85:2511–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Science and Technology Council (Ministry of Science and Technology), Taiwan (R.O.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsuan-Hung Liu.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HH. Discovering the micellization of linear A-b-(B-alt-C)2-b-A multiblock terpolymers in selective solvents. Polym J 57, 959–973 (2025). https://doi.org/10.1038/s41428-025-01053-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01053-5

Search

Quick links