Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Segregation behavior of a tackifier in styrene-butadiene rubber under a temperature gradient

Abstract

Structure development under a temperature gradient was studied using a miscible blend of styrene-butadiene rubber (SBR) and a tackifier, an oligomeric copolymer comprising mainly styrene and α-methyl styrene (AMS). AMS was found to be miscible with SBR at an AMS content of up to 30 parts per hundred rubber (phr) (23 wt.%) at temperatures below 120 °C. A blend sheet with a thickness of 1 mm was placed in a compression-molding machine, where the top and bottom plates were maintained at different temperatures, such as 120 °C/80 °C and 100 °C/60 °C. After 30 min, the AMS contents on both surfaces were characterized. The AMS content on the low temperature side was high, and vice versa, with no phase separation. Furthermore, the phase diagram of the SBR/AMS blends as a function of the blend composition and temperature was examined. The system was found to show lower critical solution temperature behavior, suggesting that the Flory–Huggins interaction parameter increases with temperature. Therefore, at low temperature, blends containing large amounts of AMB must have a low free energy, which may result in the different compositions of the surfaces after exposure to a temperature gradient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones RAL, Kramer EJ, Rafailovich MH, Sokolov J, Schwarz SA. Surface enrichment in an isotopic polymer blend. Phys Rev Lett. 1989;62:280–3.

    Article  CAS  PubMed  Google Scholar 

  2. Fredrickson GH, Donley JP. Influence of broken conformational symmetry on the surface enrichment of polymer blends. J Chem Phys. 1992;97:8941–6.

    Article  CAS  Google Scholar 

  3. Tanaka K, Takahara A, Kajiyama T. Effect of polydispersity on surface molecular motion of polystyrene films. Macromolecules. 1997;30:6626–32.

    Article  CAS  Google Scholar 

  4. Tanaka K, Kajiyama T, Takahara A, Tasaki S. A novel method to examine surface composition in mixtures of chemically identical two polymers with different molecular weights. Macromolecules. 2002;35:4702–6.

    Article  CAS  Google Scholar 

  5. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S. Surface composition control via chain end segregation in blend films of polystyrene and poly(vinyl methyl ether). Macromolecules. 2003;36:6824–30.

    Article  CAS  Google Scholar 

  6. Suwa J, Kakiage M, Yamanobe T, Komoto T, Uehara H. Molecular weight segregation on surfaces of polyethylene blended films as estimated from nanoscratch tests using scanning probe microscopy. Langmuir. 2007;23:5882–5.

    Article  CAS  PubMed  Google Scholar 

  7. Siriprumpoonthum M, Mieda N, Nobukawa S, Yamaguchi M. Segregation behavior of polyethylene with broad molecular weight distribution by annealing procedure in temperature gradient. J Polym Res. 2011;18:2449–53.

    Article  CAS  Google Scholar 

  8. Sako T, Nobukawa S, Yamaguchi M. Surface localization of poly(methyl methacrylate) in a miscible blend with polycarbonate. Polym J. 2015;47:576–9.

    Article  CAS  Google Scholar 

  9. Mahmoudi P, Forrest WSR, Beardsley TM, Matsen MW. Testing the universality of entropic segregation at polymer surfaces. Macromolecules. 2018;51:1242–7.

    Article  CAS  Google Scholar 

  10. Blaber S, Mahmoudi P, Spencer RKW, Matsen MW. Effect of chain stiffness on the entropic segregation of chain ends to the surface of a polymer melt. J Chem Phys. 2019;150:014904.

    Article  CAS  PubMed  Google Scholar 

  11. Szczepanski CR, Torkelson JM. Engineering surface hydrophilicity via polymer chain-end segregation in coatings formed by photopolymerization. ACS Appl Polym Mater. 2019;1:3095–102.

    Article  CAS  Google Scholar 

  12. Polson JM, Kerry DRM. Segregation of polymers under cylindrical confinement: effects of polymer topology and crowding. Soft Matter. 2018;14:6360–73.

    Article  CAS  PubMed  Google Scholar 

  13. Orlicki JA, Viernes NOL, Moore JS, Sendijarevic I, McHugh AJ. Roles of molecular architecture and end-group functionality on the surface properties of branched polymers. Langmuir. 2002;18:9990–5.

    Article  CAS  Google Scholar 

  14. Yamamoto K, Kawaguchi D, Abe T, Komino T, Mamada M, Kabe T, Adachi C, Naka K, Tanaka K. Surface segregation of a star-shaped polyhedral oligomeric silsesquioxane in a polymer matrix. Langmuir. 2020;36:9960–6.

    Article  CAS  PubMed  Google Scholar 

  15. Polyakov P, Rossinsky E, Wiegand S. Study of the Soret effect in hydrocarbon chain/aromatic compound mixtures. J Phys Chem B. 2009;113:13308–12.

    Article  CAS  PubMed  Google Scholar 

  16. Köhler W, Morozov KI. The Soret effect in liquid mixtures – A review. J Non-Equilib Thermodyn. 2016;41:151–97.

    Article  Google Scholar 

  17. Zhang M, Müller-Plathe F. The Soret effect in dilute polymer solutions: Influence of chain length, chain stiffness, and solvent quality. J Chem Phys. 2006;125:124903.

    Article  PubMed  Google Scholar 

  18. Maeda YT, Buguin A, Libchaber A. Thermal separation: Interplay between the Soret effect and entropic force gradient. Phys Rev Lett. 2011;107:038301.

    Article  PubMed  Google Scholar 

  19. Sarkar P, Bhowmick AK. Sustainable rubbers and rubber additives. J Appl Polym Sci. 2018;135:45701.

    Article  Google Scholar 

  20. van Amerongen GJ. Diffusion in elastomers. Rubber Chem Technol. 1964;37:1065–152.

    Article  Google Scholar 

  21. Sommer JG Troubleshooting rubber problems. 13th. Hanser Publications; (2014).

  22. Doan VA, Nobukawa S, Ohtsubo S, Tada T, Yamaguchi M. Interphase transfer of tackifier between poly(butadiene) and poly(styrene-co-butadiene). J Mater Sci. 2013;48:2046–52.

    Article  CAS  Google Scholar 

  23. Kuhakongkiat N, Wachteng V, Nobukawa S, Yamaguchi M. Interphase transfer of plasticizer between immiscible rubbers. Polymer. 2015;78:208–11.

    Article  CAS  Google Scholar 

  24. Kuhakongkiat N, Nobukawa S, Yamaguchi M. Interphase transfer of tackifier between immiscible rubbers. J Macromol Sci Part B. 2016;55:262–71.

    Article  CAS  Google Scholar 

  25. Kuhakongkiat N, Sugiyama M, Guesnier M, Azaman FA, Yoshida K, Yamaguchi M. Design of thermochromic polymer blends containing low-mass compounds. J Appl Polym Sci. 2018;135:45927.

    Article  Google Scholar 

  26. Aubrey DW. The nature and action of tackifier resins. Rubber Chem Technol. 1988;61:448–69.

    Article  CAS  Google Scholar 

  27. Kim SW, Lee GH, Heo GS. Identification of tackifying resins and reinforcing resins in cured rubber. Rubber Chem Technol. 1999;72:181–98.

    Article  Google Scholar 

  28. Uchiyama T, Kato S, Fukushima R inventors; Bridgestone Corporation assignee. Rubber composition and tire using the same. U.S. Patent; No 8722806B2, 2014.

  29. Lin Y-J, Hwang S-J. Temperature prediction of rolling tires by computer simulation. Math Comput Simul. 2004;67:235–49.

    Article  Google Scholar 

  30. Song HS, Jung SP, Park TW. Simulation of temperature rise within a rolling tire by using FE analysis. J Mech Sci Technol. 2018;32:3419–25.

    Article  Google Scholar 

  31. Graessley WW The Entanglement Concept in Polymer Rheology. New York: Springer-Verlag; (1974).

  32. Yarusso DJ Effect of rheology on PSA performance. In: Dillard DA, Pocius, AV, M. Chaudhury. Adhesion Science and Engineering. Amsterdam: Elsevier Science B.V.; 2002. p. 499-533.

  33. Basak GC, Bandyopadhyay A, Bhowmick AK. Effect of tackifier compatibility and blend viscoelasticity on peel strength behavior of vulcanized EPDM rubber co-cured with unvulcanized rubber. International J Adhes Adhesives. 2010;30:489–99.

    Article  CAS  Google Scholar 

  34. Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Astron Soc. 1956;1:123–9.

    CAS  Google Scholar 

  35. Wolf A, Fernandes JP, Yan C, Dieden R, Poorters L, Weydert M, Verge P. An investigation on the thermally induced compatibilization of SBR and α-Methylstyrene/Styrene resin. Polymers. 2021;13:1267.

  36. Zhang P, He J, Zhou X. An FTIR standard addition method for quantification of bound styrene in its copolymers. Polym Test. 2008;27:153–7.

    Article  Google Scholar 

  37. Takemoto M, Karasawa T, Mizumachi H, Kajiyama M. Miscibility between ethylene vinyl acetate copolymers and tackifier resins. J Adhes. 2000;72:85–96.

    Article  CAS  Google Scholar 

  38. Fujita M, Kajiyama M, Takemura A, Ono H, Mizumachi H, Hayashi S. Miscibility between natural rubber and tackifiers. I. Phase diagrams of the blends of natural rubber with rosin and terpene resins. J Appl Polym Sci. 1997;64:2191–7.

    Article  CAS  Google Scholar 

  39. Fujita M, Kajiyama M, Takemura A, Ono H, Mizumachi H, Hayashi S. Miscibility between natural rubber and tackifiers. II. Phase diagrams of the blends of natural rubber and petroleum resins. J Appl Polym Sci. 1998;67:221–9.

    Article  CAS  Google Scholar 

  40. Flory PJ Principles of Polymer Chemistry. Cornell University Press; (1953).

  41. Bates FS. Polymer-Polymer phase behavior. Sci. 1991;251:898–905.

    Article  CAS  Google Scholar 

  42. Manias E., Utracki LA Thermodynamics of Polymer Blends. In: Polymer Blends Handbook. Springer Netherlands; 2014. p.

  43. Prigogine I The molecular theory of solutions. Amsterdam: North-Holland Publishing Company; (1957).

  44. Paul DR, Newman S In: Polymer blends. New York: Academic Press; 1978. p.

  45. Olabisi O, Robeson LM, Shaw MT Polymer-polymer miscibility. Academic Press; (1979).

  46. Patterson D. Polymer compatibility with and without a solvent. Polym Eng Sci. 1982;22:64–73.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Laura Murray, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quoc-Viet Do, Masayuki Yamaguchi or Vu Anh Doan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, QV., Yamaguchi, M., Tada, T. et al. Segregation behavior of a tackifier in styrene-butadiene rubber under a temperature gradient. Polym J 57, 1025–1032 (2025). https://doi.org/10.1038/s41428-025-01058-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01058-0

This article is cited by

Search

Quick links