Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multicyclic polymer synthesis via a consecutive cyclization approach

Abstract

Macromolecules with cyclic topologies have attracted significant attention because of the absence of polymer chain ends that clearly distinguishes them from linear or branched polymers. However, the synthesis of macrocyclic polymers, particularly those possessing multiple cyclic units, remains challenging. Recently, our research group established a highly efficient method for the synthesis of multicyclic polymers without the use of cyclic precursors. This review provides a comprehensive overview of our recent studies and relevant research on the precise synthesis of multicyclic polymers, including cage-shaped polymers, spiro-multicyclic polymers, and graft polymers with macromolecular cyclic or cage side chains, via intramolecular ring-opening metathesis oligomerization or the cyclopolymerization of norbornenyl-functionalized macromonomers, mediated by third-generation Grubbs catalysts. In addition, their fundamental properties and potential applications are briefly discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Scheme 4
Fig. 10
Fig. 11
Fig. 12
Scheme 5
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Clarson SJ, Semlyen JA. Cyclic polysiloxanes: 1. Preparation and characterization of poly(phenylmethylsiloxane). Polymer. 1986;27:1633–6.

    Article  CAS  Google Scholar 

  2. Santangelo PG, Roland CM, Chang T, Cho D, Roovers J. Dynamics near the glass temperature of low molecular weight cyclic polystyrene. Macromolecules. 2001;34:9002–5.

    Article  CAS  Google Scholar 

  3. Zimm BH, Stockmayer WH. The dimensions of chain molecules containing branches and rings. J Chem Phys. 1949;17:1301–14.

    Article  CAS  Google Scholar 

  4. Morgese G, Trachsel L, Romio M, Divandari M, Ramakrishna SN, Benetti EM. Topological polymer chemistry enters surface science: linear versus cyclic polymer brushes. Angew Chem. 2016;128:15812–7.

    Article  Google Scholar 

  5. Honda S, Yamamoto T, Tezuka Y. Topology-directed control on thermal stability: micelles formed from linear and cyclized amphiphilic block copolymers. J Am Chem Soc. 2010;132:10251–3.

    Article  PubMed  CAS  Google Scholar 

  6. Gavrilov M, Amir F, Kulis J, Hossain MD, Jia Z, Monteiro MJ. Densely packed multicyclic polymers. ACS Macro Lett. 2017;6:1036–41.

    Article  PubMed  CAS  Google Scholar 

  7. Pipertzis A, Hossain MD, Monteiro MJ, Floudas G. Segmental dynamics in multicyclic polystyrenes. Macromolecules. 2018;51:1488–97.

    Article  CAS  Google Scholar 

  8. Ree BJ, Satoh Y, Isono T, Satoh T. Correlations of nanoscale film morphologies and topological confinement of three-Armed cage block copolymers. Polym Chem. 2021;12:3451–60.

    Article  CAS  Google Scholar 

  9. Ree BJ, Satoh Y, Isono T, Satoh T. Influence of topological confinement on nanoscale film morphologies of tricyclic block copolymers. Macromolecules. 2021;54:4120–7.

    Article  CAS  Google Scholar 

  10. Kyoda K, Yamamoto T, Tezuka Y. Programmed polymer folding with periodically positioned tetrafunctional telechelic precursors by cyclic ammonium salt units as nodal points. J Am Chem Soc. 2019;141:7526–36.

    Article  PubMed  CAS  Google Scholar 

  11. Wagner HL. The Mark–Houwink–Sakurada equation for the viscosity of atactic polystyrene. J Phys Chem Ref Data. 1985;14:1101–6.

    Article  CAS  Google Scholar 

  12. Liénard R, De Winter J, Coulembier O. Cyclic polymers: advances in their synthesis, properties, and biomedical applications. J Polym Sci. 2020;58:1481–502.

    Article  Google Scholar 

  13. Chen C, Weil T. Cyclic polymers: synthesis, characteristics, and emerging applications. Nanoscale Horiz. 2022;7:1121–35.

    Article  PubMed  CAS  Google Scholar 

  14. Haque FM, Grayson SM. The synthesis, properties and potential applications of cyclic polymers. Nat Chem. 2020;12:433–44.

    Article  PubMed  CAS  Google Scholar 

  15. Kricheldorf HR, Lee SR. Polylactones. 40. Nanopretzels by macrocyclic polymerization of lactones via a spirocyclic tin initiator derived from pentaerythritol. Macromolecules. 1996;29:8689–95.

    Article  CAS  Google Scholar 

  16. Zhang Z, Nie X, Wang F, Chen G, Huang WQ, Xia L, et al. Rhodanine-based Knoevenagel reaction and ring-opening polymerization for efficiently constructing multicyclic polymers. Nat Commun. 2020;11:3654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chen J, Li H, Zhang H, Liao X, Han H, Zhang L, et al. Blocking-cyclization technique for precise synthesis of cyclic polymers with regulated topology. Nat Commun. 2018;9:5310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lonsdale DE, Monteiro MJ. Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. Chem Commun. 2010;46:7945–7.

    Article  CAS  Google Scholar 

  19. Ko YS, Yamamoto T, Tezuka Y. Click construction of spiro- and bridged-quatrefoil polymer topologies with kyklo-telechelics having an azide group. Macromol Rapid Commun. 2014;35:412–6.

    Article  PubMed  CAS  Google Scholar 

  20. Sugai N, Heguri H, Ohta K, Meng Q, Yamamoto T, Tezuka Y. Effective click construction of bridged-and spiro-multicyclic polymer topologies with tailored cyclic prepolymers (kyklo-telechelics). J Am Chem Soc. 2010;132:14790–802.

    Article  PubMed  CAS  Google Scholar 

  21. Jeong J, Kim K, Lee R, Lee S, Kim H, Jung H, et al. Preparation and analysis of bicyclic polystyrene. Macromolecules. 2014;47:3791–6.

    Article  CAS  Google Scholar 

  22. Lee T, Oh J, Jeong J, Jung H, Huh J, Chang T, et al. Shaped and cage-shaped cyclic polystyrenes. Macromolecules. 2016;49:3672–80.

    Article  CAS  Google Scholar 

  23. Sugai N, Heguri H, Yamamoto T, Tezuka Y. A programmed polymer folding: click and clip construction of doubly fused tricyclic and triply fused tetracyclic polymer topologies. J Am Chem Soc. 2011;133:19694–7.

    Article  PubMed  CAS  Google Scholar 

  24. Tezuka Y. Topological polymer chemistry for designing multicyclic macromolecular architectures. Polym J. 2012;44:1159–69.

    Article  CAS  Google Scholar 

  25. Zhang Y, Wu Y, Zhao Y, Zhang L, Zhang K. Versatile bimolecular ring-closure method for cage-shaped polymers. Macromolecules. 2021;54:6901–10.

    Article  CAS  Google Scholar 

  26. Shi GY, Pan CY. Synthesis of well-defined figure-of-eight-shaped polymers by a combination of ATRP and click chemistry. Macromol Rapid Commun. 2008;29:1672–8.

    Article  CAS  Google Scholar 

  27. Bukowski C, Zhang T, Riggleman RA, Crosby AJ. Load-bearing entanglements in polymer glasses. Sci Adv. 2021;7:eabg9763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gauthier-Jaques M, Theato P. Synergy of macrocycles and macromolecular topologies: an efficient [34]Triazolophane-based synthesis of cage-shaped polymers. ACS Macro Lett. 2020;9:700–5.

    Article  PubMed  CAS  Google Scholar 

  29. Satoh Y, Matsuno H, Yamamoto T, Tajima K, Isono T, Satoh T. Synthesis of well-defined three- and four-armed cage-shaped polymers via ‘topological conversion’ from trefoil- and quatrefoil-shaped polymers. Macromolecules. 2017;50:97–106.

    Article  CAS  Google Scholar 

  30. Isono T, Sasamori T, Honda K, Mato Y, Yamamoto T, Tajima K, et al. Multicyclic polymer synthesis through controlled/living cyclopolymerization of α,ω-Dinorbornenyl-Functionalized macromonomers. Macromolecules. 2018;51:3855–64.

    Article  CAS  Google Scholar 

  31. Ebii Y, Mato Y, Li F, Tajima K, Yamamoto T, Isono T, et al. Cyclopolymerization: a versatile approach toward multicyclic polystyrene and polystyrene-containing multicyclic copolymers. Polym Chem. 2023;14:3099–109.

    Article  CAS  Google Scholar 

  32. Radzinski SC, Foster JC, Chapleski RC, Troya D, Matson JB. Bottlebrush polymer synthesis by ring-opening metathesis polymerization: the significance of the anchor group. J Am Chem Soc. 2016;138:6998–7004.

    Article  PubMed  CAS  Google Scholar 

  33. Xia Y, Kornfield JA, Grubbs RH. Efficient synthesis of narrowly dispersed brush polymers via living ring-opening metathesis polymerization of macromonomers. Macromolecules. 2009;42:3761–6.

    Article  CAS  Google Scholar 

  34. Li A, Li Z, Zhang S, Sun G, Policarpio DM, Wooley KL. Synthesis and direct visualization of dumbbell-shaped molecular brushes. ACS Macro Lett. 2012;1:241–5.

    Article  PubMed  CAS  Google Scholar 

  35. Makiguchi K, Satoh T, Kakuchi T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules. 2011;44:1999–2005.

    Article  CAS  Google Scholar 

  36. Mato Y, Honda K, Tajima K, Yamamoto T, Isono T, Satoh T. A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chem Sci. 2019;10:440–6.

    Article  PubMed  CAS  Google Scholar 

  37. Mato Y, Honda K, Ree BJ, Tajima K, Yamamoto T, Deguchi T, et al. Programmed folding into spiro-multicyclic polymer topologies from linear and star-shaped chains. Commun Chem. 2020;3:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Mato Y, Sudo M, Marubayashi H, Ree BJ, Tajima K, Yamamoto T, et al. Densely arrayed cage-shaped polymer topologies synthesized via cyclopolymerization of star-shaped macromonomers. Macromolecules. 2021;54:9079–90.

    Article  CAS  Google Scholar 

  39. Li Z, Zhang KE, Ma J, Cheng C, Wooley KL. Facile syntheses of cylindrical molecular brushes by a sequential RAFT and ROMP ‘Grafting-Through’ methodology. J Polym Sci A Polym Chem. 2009;47:5557–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hsu HP, Paul W, Rathgeber S, Binder K. Characteristic length scales and radial monomer density profiles of molecular bottle-brushes: simulation and experiment. Macromolecules. 2010;43:1592–601.

    Article  CAS  Google Scholar 

  41. Li Z, Ma J, Lee NS, Wooley KL. Dynamic cylindrical assembly of triblock copolymers by a hierarchical process of covalent and supramolecular interactions. J Am Chem Soc. 2011;133:1228–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pesek SL, Li X, Hammouda B, Hong K, Verduzco R. Small-angle neutron scattering analysis of bottlebrush polymers prepared via grafting-through polymerization. Macromolecules. 2013;46:6998–7005.

    Article  CAS  Google Scholar 

  43. Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21:581–91.

    Article  CAS  Google Scholar 

  44. Gao L, Oh J, Tu Y, Chang T, Li CY. Glass transition temperature of cyclic polystyrene and the linear counterpart contamination effect. Polymer (Guildf). 2019;170:198–203.

    Article  CAS  Google Scholar 

  45. Ebe M, Soga A, Fujiwara K, Ree BJ, Marubayashi H, Hagita K, et al. Rotaxane formation of multicyclic polydimethylsiloxane in a silicone network: a step toward constructing “macro-rotaxanes” from high-molecular-weight axle and wheel components. Angew Chem Int Ed Engl. 2023;62:e202304493.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a MEXT Grant-in-Aid for Challenging Exploratory Research (19K22209 and 24K21788), JST CREST (JPMJCR19T4), the Eno Scientific Foundation, Tokyo Ohka Foundation for the Promotion of Science and Technology, and the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takuya Isono or Toshifumi Satoh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebii, Y., Ebe, M., Li, F. et al. Multicyclic polymer synthesis via a consecutive cyclization approach. Polym J 57, 1295–1311 (2025). https://doi.org/10.1038/s41428-025-01078-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41428-025-01078-w

Search

Quick links