Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Powderization of gallium-indium eutectic alloy with small-molecule surfactants for the simple preparation of liquid metal-polymer composites

Abstract

Gallium-based liquid metals are promising materials for fabricating polymer composites with electrical and thermal conductivities because of their intrinsic deformability and metallic properties. However, their high surface tension often prevents the easy preparation of uniformly dispersed composites. Herein, we propose the “powderization” method for the preparation of eutectic gallium–indium alloys by using a small-molecule dispersant, such as 1-dodecanethiol, affording powdery samples that can be treated like a solid-state powder. Mechanical shear forces can induce the recovery of the liquid metal bulk through the coalescence of microparticles in the powdery samples. Several types of polymer composites based on these powdered liquid metals are prepared simply by manual mixing and exhibit stimulus-responsive electrical conductivity and microwave heating.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017;90:75–127.

    Article  CAS  Google Scholar 

  2. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016;59:41–85.

    Article  CAS  Google Scholar 

  3. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011;36:914–44.

    Article  CAS  Google Scholar 

  4. Loste J, Lopez-Cuesta J-M, Billon L, Garay H, Save M. Transparent polymer nanocomposites: An overview on their synthesis and advanced properties. Prog. Polym. Sci. 2019;89:133–58.

    Article  CAS  Google Scholar 

  5. Amjadi M, Kyung K, Park I, Sitti M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016;26:1678–98.

    Article  CAS  Google Scholar 

  6. Liu H, Li Q, Zhang S, Yin R, Liu X, He Y, et al. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. J. Mater. Chem. C. 2018;6:12121–41.

    Article  CAS  Google Scholar 

  7. McCoul D, Hu W, Gao M, Mehta V, Pei Q. Recent Advances in Stretchable and Transparent Electronic Materials. Adv. Electron. Mater. 2016;2:1500407.

    Article  Google Scholar 

  8. Choi S, Han SI, Kim D, Hyeon T, Kim D-H. High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chem. Soc. Rev. 2018;48:1566–95.

    Article  Google Scholar 

  9. Dickey MD. Stretchable and Soft Electronics using Liquid Metals. Adv. Mater. 2017;29:1606425.

    Article  Google Scholar 

  10. Tang S-Y, Tabor C, Kalantar-Zadeh K, Dickey MD. Gallium Liquid Metal: The Devil’s Elixir. Annu. Rev. Mater. Res. 2021;51:1–28.

    Article  Google Scholar 

  11. He J, Liang S, Li F, Yang Q, Huang M, He Y, et al. Recent Development in Liquid Metal Materials. ChemistryOpen. 2021;10:360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tang S-Y, Qiao R. Liquid Metal Particles and Polymers: A Soft–Soft System with Exciting Properties. Acc. Mater. Res. 2021;2:966–78.

    Article  CAS  Google Scholar 

  13. Style RW, Tutika R, Kim JY, Bartlett MD. Solid–Liquid Composites for Soft Multifunctional Materials. Adv. Funct. Mater. 2021;31:2005804.

    Article  CAS  Google Scholar 

  14. Song H, Kim T, Kang S, Jin H, Lee K, Yoon HJ. Ga-Based Liquid Metal Micro/Nanoparticles: Recent Advances and Applications. Small. 2020;16:1903391.

    Article  CAS  Google Scholar 

  15. Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium–Indium: From Properties to Applications. Adv. Mater. 2023;35:2203391.

    Article  CAS  Google Scholar 

  16. Chen S, Wang H-Z, Zhao R-Q, Rao W, Liu J. Liq. Met. Compos. Matter. 2020;2:1446–80.

    Google Scholar 

  17. Fassler A, Majidi C. Liquid-Phase Metal Inclusions for a Conductive Polymer Composite. Adv. Mater. 2014;27:1928–32.

    Article  Google Scholar 

  18. Markvicka EJ, Bartlett MD, Huang X, Majidi C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018;17:618–24.

    Article  CAS  PubMed  Google Scholar 

  19. Chu K, Song BG, Yang H, Kim D, Lee CS, Park M, et al. Smart Passivation Materials with a Liquid Metal Microcapsule as Self-Healing Conductors for Sustainable and Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2018;28:1800110.

    Article  Google Scholar 

  20. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C. Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions. Adv. Mater. 2016;28:3726–31.

    Article  CAS  PubMed  Google Scholar 

  21. Kazem N, Bartlett MD, Majidi C. Extreme Toughening of Soft Materials with Liquid Metal. Adv. Mater. 2018;30:e1706594.

    Article  PubMed  Google Scholar 

  22. Schubert BE, Floreano D. Variable stiffness material based on rigid low-melting-point-alloy microstructures embedded in soft poly(dimethylsiloxane) (PDMS). RSC Adv. 2013;3:24671–9.

    Article  CAS  Google Scholar 

  23. Handschuh-Wang S, Zhu L, Gan T, Wang T, Wang B, Zhou X. Interfacing of surfaces with gallium-based liquid metals–approaches for mitigation and augmentation of liquid metal adhesion on surfaces. Appl. Mater. Today. 2020;21:100868.

    Article  Google Scholar 

  24. Yan J, Malakooti MH, Lu Z, Wang Z, Kazem N, Pan C, et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization. Nat. Nanotechnol. 2019;14:684–90.

    Article  CAS  PubMed  Google Scholar 

  25. Wei Q, Sun M, Wang Z, Yan J, Yuan R, Liu T, et al. Surface Engineering of Liquid Metal Nanodroplets by Attachable Diblock Copolymers. ACS Nano. 2020;14:9884–93.

    Article  CAS  PubMed  Google Scholar 

  26. Corrigan N, Shi X, Boyer, C. Diblock Copolymer Stabilized Liquid Metal Nanoparticles: Particle Settling Behavior and Application to 3D Printing. ACS Macro Lett. 2023;12:241–7.

  27. Fan B, Wan J, Liu Y, Tian WW, Thang SH. Functionalization of liquid metal nanoparticles via the RAFT process. Polym. Chem. 2021;12:3015–25.

    Article  CAS  Google Scholar 

  28. Zhai Z, Long L, Che X, Zhang B, Wang T, Li M, et al. Capturing aqueous uranyl ions into catalytic nanometric shells of liquid metal droplets for electrochemical reduction. Chem. Eng. J. 2024;483:149402.

    Article  CAS  Google Scholar 

  29. Lin Y, Liu Y, Genzer J, Dickey MD. Shape-transformable liquid metal nanoparticles in aqueous solution. Chem. Sci. 2017;8:3832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hohman JN, Kim M, Wadsworth GA, Bednar HR, Jiang J, LeThai MA, et al. Directing Substrate Morphology via Self-Assembly: Ligand-Mediated Scission of Gallium–Indium Microspheres to the Nanoscale. Nano Lett. 2011;11:5104–10.

    Article  CAS  PubMed  Google Scholar 

  31. Farrell ZJ, Tabor C. Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation. Langmuir. 2018;34:234–40.

    Article  CAS  PubMed  Google Scholar 

  32. Muller BN, Feig VR, Colella NS, Traverso G, Hashmi SM. Thiol Coordination Softens Liquid Metal Particles To Improve On-Demand Conductivity. ACS Nano. 2024;18:13768–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finkenauer LR, Lu Q, Hakem IF, Majidi C, Bockstaller MR. Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaIn Nanodroplets. Langmuir. 2017;33:9703–10.

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Genzer J, Li W, Qiao R, Dickey MD, Tang S-Y. Sonication-enabled rapid production of stable liquid metal nanoparticles grafted with poly(1-octadecene- alt -maleic anhydride) in aqueous solutions. Nanoscale. 2018;10:19871–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-Induced Shape Morphing of Liquid Metal Nanodroplets Enabled by Polydopamine Coating. Small. 2019;15:e1804838.

    Article  PubMed  Google Scholar 

  36. Farrell ZJ, Reger N, Anderson I, Gawalt E, Tabor C. Route to Universally Tailorable Room-Temperature Liquid Metal Colloids via Phosphonic Acid Functionalization. J. Phys. Chem. C. 2018;122:26393–400.

    Article  CAS  Google Scholar 

  37. Catalán-Toledo J, Romero-Pallejà J, Crivillers N. Surface Modification and Stabilization of Eutectic Gallium Indium Nanoparticles with an Electrochemically Active Ligand Using Low Molecular Weight Phosphorothioates in Water. ACS Omega. 2025;10:25894–903.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kawasaki H, Otsuki T, Sugino F, Yamamoto K, Tokunaga T, Tokura R, et al. A liquid metal catalyst for the conversion of ethanol into graphitic carbon layers under an ultrasonic cavitation field. Chem. Commun. 2022;58:7741–4.

    Article  CAS  Google Scholar 

  39. Boley JW, White EL, Kramer RK. Mechanically Sintered Gallium–Indium Nanoparticles. Adv. Mater. 2015;27:2355–60.

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Wang W. Role of Freeze Drying in Nanotechnology. Dry. Technol. 2007;25:29–35.

    Article  CAS  Google Scholar 

  41. Blaiszik BJ, Kramer SLB, Grady ME, McIlroy DA, Moore JS, Sottos NR, et al. Autonomic Restoration of Electrical Conductivity. Adv. Mater. 2012;24:398–401.

    Article  CAS  PubMed  Google Scholar 

  42. Ren L, Zhuang J, Casillas G, Feng H, Liu Y, Xu X, et al. Nanodroplets for Stretchable Superconducting Circuits. Adv. Funct. Mater. 2016;26:8111–8.

    Article  CAS  Google Scholar 

  43. Chiu S-H, Baharfar M, Chi Y, Widjajana MS, Cao Z, Allioux F-M, et al. Exploring Electrical Conductivity of Thiolated Micro- and Nanoparticles of Gallium. Adv. Intell. Syst. 2023;5:2200364.

  44. Park J, You I, Shin S, Jeong U. Material Approaches to Stretchable Strain Sensors. ChemPhysChem. 2015;16:1155–63.

    Article  CAS  PubMed  Google Scholar 

  45. Wang S, Xu J, Wang W, Wang G-JN, Rastak R, Molina-Lopez F, et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018;555:83–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hughes J, Iida F. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring. Sensors. 2018;18:3822.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Müller A, Wapler MC, Wallrabe U. A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter. 2018;15:779–84.

    Article  Google Scholar 

  48. Farrell ZJ, Thrasher CJ, Flynn AE, Tabor CE. Silanized Liquid-Metal Nanoparticles for Responsive Electronics. ACS Appl. Nano Mater. 2020;3:6297–303.

    Article  CAS  Google Scholar 

  49. Mushtaq F, Mat R, Ani FN. A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renew. Sustain. Energy Rev. 2014;39:555–74.

    Article  CAS  Google Scholar 

  50. Xie Y, Shi R, Fu B, Song C, Shang W, Tao P, et al. A review of microwave–metal discharge interaction: Mechanism, regulation, and application for synthesis of nanomaterials. Nano Res. 2024;17:9225–54.

    Article  CAS  Google Scholar 

  51. Pei Z, Yang Y, Chen Q, Terentjev EM, Wei Y, Ji Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014;13:36–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Yoshihiro Sasaki and Dr. Ryosuke Mizuta of Kyoto University for the TEM measurements. We also deeply thank Dr. Naoya Inoue and Dr. Takashi Maki of Spectris Co., Ltd. for laser diffraction measurements. This work was partially supported by the Hosokawa Powder Technology Foundation (for S.I., Grant Number HPTF22102), a Grant-in-Aid for Early-Career Scientists (for S.I., JSPS KAKENHI Grant Number 23K13793), for Scientific Research (B) (for K.T., JSPS KAKENHI Grant number, 24K01570), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00406152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimamura, C.H., Ito, S. & Tanaka, K. Powderization of gallium-indium eutectic alloy with small-molecule surfactants for the simple preparation of liquid metal-polymer composites. Polym J (2025). https://doi.org/10.1038/s41428-025-01130-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41428-025-01130-9

Search

Quick links