Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Protein separation using a chitin monolith with a continuous flow system

Abstract

Chitin, the second most abundant biomaterial after cellulose, has attracted attention because of its biocompatibility and environmental friendliness, making it suitable for biomedical applications. This study explores the use of chitin monoliths, which are fabricated via thermally induced phase separation (TIPS), for protein separation in a flow system. The chitin monoliths were prepared by modifying chitin into butyryl chitin (BC) and hydrolyzing it to restore its properties. The monoliths were characterized using various techniques, including FE–SEM, ATR FT–IR, and mercury intrusion porosimetry, which revealed pore structures that were tunable on the basis of the quenching temperature. The monoliths exhibited permeability in a flow system and affinity for lysozyme. The monolith efficiently separated lysozyme from ovalbumin in the flow system, and it was able to separate a mixture of artificial sample and diluted hen egg white. The system’s stability was shown through numerous adsorption/desorption cycles, indicating very effective recovery with negligible capacity loss. This flow system was not prone to leakage and was properly dispersed, representing an improvement over a previous system. This study highlights the potential of chitin monoliths as efficient and sustainable tools for protein separation in continuous flow systems, offering improvements over traditional batch methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Draczynski Z. Synthesis and solubility properties of chitin acetate/butyrate copolymers. J Appl Polym Sci. 2011;122:175–82.

    Article  CAS  Google Scholar 

  2. Kadokawa J. A mini-review: fabrication of polysaccharide composite materials based on self-assembled chitin nanofibers. Materials. 2024;17:1898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kouzai Y, Nakajima K, Hayafune M, Ozawa K, Kaku H, Shibuya N, et al. CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers. Plant Mol Biol. 2014;84:519–28.

    Article  CAS  PubMed  Google Scholar 

  4. Long S, Zhang L, Liu Z, Jiao H, Lei A, Gong W, et al. Fabrication of biomass derived Pt-Ni bimetallic catalyst and its selective hydrogenation for 4-nitrostyrene. Nanomaterials. 2022;12:2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem. 2010;285:28902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aoi K, Takasu A, Okada M. New chitin-based polymer hybrids. 2. Improved miscibility of chitin derivatives having monodisperse poly(2-methyl-2-oxazoline) side chains with poly(vinyl chloride) and poly(vinyl alcohol). Macromolecules. 1997;30:6134–8.

    Article  CAS  Google Scholar 

  7. El-Nouby MAM, Anggraeni AR, Kinoshita E, Lim LW. Chitosan-functionalized methacrylate monoliths for mixed-mode hydrophilic/electrostatic interaction capillary liquid chromatography. ACS Appl Polym Mater. 2024;6:6022–32.

    Article  CAS  Google Scholar 

  8. García-Castrillo M, Barandika B, Lizundia E. Low environmental impact magnetic chitosan and chitin cryogels for PFAS remediation. Adv Funct Mater. 2024:2405298. https://doi.org/10.1002/adfm.202405298.

  9. Kato S, Takeuchi K, Iwaki M, Miyazaki K, Honda K, Hayashi T. Chitin- and streptavidin-mediated affinity purification systems: a screening platform for enzyme discovery. Angew Chem Int Ed. 2023;62:e202303764.

    Article  Google Scholar 

  10. Zheng Y, Zhang H, Wang Z, Lu A, Yu A, Duan B. Chitin nanofibrils assisted 3D printing all-chitin hydrogels for wound dressing. Carbohydr Polym. 2024;334:122028.

    Article  CAS  PubMed  Google Scholar 

  11. Egas DA, Wirth MJ. Fundamentals of protein separations: 50 years of nanotechnology, and growing. Annu Rev Anal Chem. 2008;1:833–55.

    Article  CAS  Google Scholar 

  12. Liu S, Li Z, Yu B, Wang S, Shen Y, Cong H. Recent advances on protein separation and purification methods. Adv Colloid Interface Sci. 2020;284:102254.

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci. 2024;47:2300669.

    Article  CAS  Google Scholar 

  14. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75:2873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lawson JS, Syme HM, Antrobus PR, Karttunen JM, Stewart SE, Karet Frankl FE, et al. Urinary extracellular vesicles as a source of protein-based biomarkers in feline chronic kidney disease and hypertension. J Small Anim Pract. 2023;64:3–11.

    Article  CAS  PubMed  Google Scholar 

  16. Lakayan D, Haselberg R, Gahoual R, Somsen GW, Kool J. Affinity profiling of monoclonal antibody and antibody-drug-conjugate preparations by coupled liquid chromatography-surface plasmon resonance biosensing. Anal Bioanal Chem. 2018;410:7837–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: finally ready for prime time?. Vaccine. 2019;37:5491–503.

    Article  CAS  PubMed  Google Scholar 

  18. Jaworska MM, Antos D, Górak A. Review on the application of chitin and chitosan in chromatography. React Funct Polym. 2020;152:104606.

    Article  CAS  Google Scholar 

  19. Anderson NG. Practical use of continuous processing in developing and scaling up laboratory processes. Org Process Res Dev. 2001;5:613–21.

    Article  CAS  Google Scholar 

  20. Seto H, Shibuya M, Matsumoto H, Hoshino Y, Miura Y. Glycopolymer monoliths for affinity bioseparation of proteins in a continuous-flow system: glycomonoliths. J Mater Chem B. 2017;5:1148–54.

    Article  CAS  PubMed  Google Scholar 

  21. Lalli E, Silva JS, Boi C, Sarti GC. Affinity membranes and monoliths for protein purification. Membranes. 2019;10:1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Podgornik A, Jančar J, Merhar M, Kozamernik S, Glover D, Čuček K, et al. Large-scale methacrylate monolithic columns: design and properties. J Biochem Biophys Methods. 2004;60:179–89.

    Article  CAS  PubMed  Google Scholar 

  23. Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: a review of recent advances and applications. Anal Chim Acta. 2019;1046:48–68.

    Article  CAS  PubMed  Google Scholar 

  24. Baumann M, Moody TS, Smyth M, Wharry S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org Process Res Dev. 2020;24:1802–13.

    Article  CAS  Google Scholar 

  25. Wiles C, Watts P. Continuous flow reactors: a perspective. Green Chem. 2012;14:38–54.

    Article  CAS  Google Scholar 

  26. Hajili E, Suo Z, Sugawara A, Asoh T-A, Uyama H. Fabrication of chitin monoliths with controllable morphology by thermally induced phase separation of chemically modified chitin. Carbohydr Polym. 2022;275:118680.

    Article  CAS  PubMed  Google Scholar 

  27. Ghorbandoust M, Fasihi M, Norouzbeigi R. Tuning pore size and density of rigid polylactic acid foams through thermally induced phase separation and optimization using response surface methodology. Sci Rep. 2024;14:12395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47:8–17.

    Article  CAS  PubMed  Google Scholar 

  29. Goshisht MK, Moudgil L, Rani M, Khullar P, Singh G, Kumar H, et al. Lysozyme complexes for the synthesis of functionalized biomaterials to understand protein–protein interactions and their biological applications. J Phys Chem C. 2014;118:28207–19.

    Article  CAS  Google Scholar 

  30. Wu T, Jiang Q, Wu D, Hu Y, Chen S, Ding T, et al. What is new in lysozyme research and its application in food industry? A review. Food Chem. 2019;274:698–709.

    Article  CAS  PubMed  Google Scholar 

  31. Leśnierowski G, Yang T. Lysozyme and its modified forms: a critical appraisal of selected properties and potential. Trends Food Sci Technol. 2021;107:333–42.

    Article  Google Scholar 

  32. Hsu J-L, Wang SS-S, Ooi CW, Thew XEC, Lai Y-R, Chiu C-Y, et al. Reactive Green 19 dye-ligand immobilized on the aminated nanofiber membranes for efficient adsorption of lysozyme: Process development and optimization in batch and flow systems. Food Chem. 2023;406:135028.

    Article  CAS  PubMed  Google Scholar 

  33. Tovar GI, Fernández De Luis R, Arriortua MI, Wolman FJ, Copello GJ. Enhanced chitin gel with magnetic nanofiller for lysozyme purification. J Ind Eng Chem. 2020;88:90–98.

    Article  CAS  Google Scholar 

  34. Wang J, Shen Y, Zhuang Y, Wang J, Zhang Y. Multimodal affinity-modulated efficient separation of lysozyme with a hierarchical MXene@MOF hybrid framework. Anal Chem. 2024;96:12102–11.

    Article  CAS  PubMed  Google Scholar 

  35. Wolman FJ, Copello GJ, Mebert AM, Targovnik AM, Miranda MV, Navarro Del Cañizo AA, et al. Egg white lysozyme purification with a chitin–silica-based affinity chromatographic matrix. Eur Food Res Technol. 2010;231:181–8.

    Article  CAS  Google Scholar 

  36. Li Z, Cao M, Zhang W, Liu L, Wang J, Ge W, et al. Affinity adsorption of lysozyme with Reactive Red 120 modified magnetic chitosan microspheres. Food Chem. 2014;145:749–55.

    Article  CAS  PubMed  Google Scholar 

  37. Wu T, Zivanovic S. Determination of the degree of acetylation (DA) of chitin and chitosan by an improved first derivative UV method. Carbohydr Polym. 2008;73:248–53.

    Article  CAS  Google Scholar 

  38. Bagheri-Khoulenjani S, Mirzadeh H, Etrati-Khosroshahi M, Shokrgozar MA. Development of a method for measuring and modeling the NH2 content and crosslinking density of chitosan/gelatin/nanohydroxyapatite based microspheres. Polym Test. 2016;51:20–28.

    Article  CAS  Google Scholar 

  39. Nouri A, Jelkmann M, Khoee S, Bernkop-Schnürch A. Diaminated starch: a competitor of chitosan with highly mucoadhesive properties due to increased local cationic charge density. Biomacromolecules. 2020;21:999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruckenstein E, Zeng X. Macroporous chitin affinity membranes for lysozyme separation. Biotechnol Bioeng. 1997;56:610–7.

    Article  CAS  PubMed  Google Scholar 

  41. Ono K-I, Kamihira M, Kuga Y, Matsumoto H, Hotta A, Itoh T, et al. Production of anti-prion scFv-Fc fusion proteins by recombinant animal cells. J Biosci Bioeng. 2003;95:231–8.

    Article  CAS  PubMed  Google Scholar 

  42. Cinar H, Winter R. The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid–liquid phase separation: a pressure-jump relaxation study. Sci Rep. 2020;10:17245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carmona P, Röding M, Särkkä A, Von Corswant C, Olsson E, Lorén N. Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films. Soft Matter. 2022;18:3206–17.

    Article  CAS  PubMed  Google Scholar 

  44. Kirsebom H, Topgaard D, Galaev IY, Mattiasson B. Modulating the porosity of cryogels by influencing the nonfrozen liquid phase through the addition of inert solutes. Langmuir. 2010;26:16129–33.

    Article  CAS  PubMed  Google Scholar 

  45. Podgornik A, Hamachi M, Isakari Y, Yoshimoto N, Yamamoto S. Effect of pore size on performance of monolithic tube chromatography of large biomolecules. Electrophoresis. 2017;38:2892–9.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao C, Si Y, Zhu S, Bradley K, Taha AY, Pan T, et al. Diffusion of protein molecules through microporous nanofibrous polyacrylonitrile membranes. ACS Appl Polym Mater. 2021;3:1618–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shigeeda H, Matsumoto H, Nagao M, Miura Y. Residence time distribution effects on continuous-flow reaction in a polymer gel-based porous monolith: investigation of an asymmetric reaction with supported Hayashi–Jørgensen catalysts. React Chem Eng. 2025;10:1039.D4RE00597J.

    Article  Google Scholar 

  48. Xie Z, Li L, Hsu Y-I, Asoh T-A, Uyama H. Citric acid functionalized cellulose monolith for continuous-flow removal of cationic dye in water. Nano Sel. 2022;3:930–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Nos. JP25H01288 and JP23K26708). ADRM would like to thank the Ministry of Religious Affair (MORA)-Indonesia Endowment Fund for Education (LPDP) under the Ministry of Finance, Republic of Indonesia, for its scholarship funding support (PG08-222-0006725). The authors would like to thank Prof. Hiroshi Uyama and Dr. Emil Hajili, Osaka University, for sharing their knowledge on the preparation of the monoliths.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Miura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madjid, A.D.R., Matsumoto, H., Kawabe, Y. et al. Protein separation using a chitin monolith with a continuous flow system. Polym J (2026). https://doi.org/10.1038/s41428-025-01134-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41428-025-01134-5

Search

Quick links