Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening

Abstract

Staphylococcus aureus is one of the most dangerous pathogens commonly associated with high levels of morbidity and mortality. Sortase A is considered as a promising molecular target for the development of antistaphylococcal agents. Using hybrid virtual screening approach and FRET analysis, we have identified five compounds able to decrease the activity of sortase A by more than 50% at the concentration of 200 µM. The most promising compound was 2-(2-amino-3-chloro-benzoylamino)-benzoic acid which was able to inhibit S. aureus sortase A at the IC50 value of 59.7 µM. This compound was selective toward sortase A compared to other four cysteine proteases – cathepsin L, cathepsin B, rhodesain, and the SARS-CoV2 main protease. Microscale thermophoresis experiments confirmed that this compound bound sortase A with KD value of 189 µM. Antibacterial and antibiofilm assays also confirmed high specificity of the hit compound against two standard and three wild-type, S. aureus hospital infection isolates. The effect of the compound on biofilms produced by two S. aureus ATCC strains was also observed suggesting that the compound reduced biofilm formation by changing the biofilm structure and thickness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ericson JE, Popoola VO, Smith PB, Benjamin DK, Fowler VG, Benjamin DK JR, et al. Burden of invasive Staphylococcus aureus infections in hospitalized infants. JAMA Pediatr. 2015;169:1105–11.

    Article  Google Scholar 

  2. Defres S, Marwick C, Nathwani D. MRSA as a cause of lung infection including airway infection, community-acquired pneumonia and hospital-acquired pneumonia. Eur Respir J. 2009;34:1470–6.

    Article  CAS  Google Scholar 

  3. Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP. Methicillin-resistant Staphylococcus aureus: the superbug. Int J Infect Dis. 2010;14:S7–S11.

    Article  Google Scholar 

  4. Gardete S, Alexander, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124:2836–40.

    Article  Google Scholar 

  5. Kali A. Antibiotics and bioactive natural products in treatment of methicillin-resistant Staphylococcus aureus (MRSA): a brief review. Pharmacogn Rev. 2015;9:29–34.

    Article  CAS  Google Scholar 

  6. Kaur DC, Chate SS. Study of antibiotic resistance pattern in methicillin-resistant Staphylococcus aureus with special reference to newer antibiotic. J Glob Infect Dis. 2015;7:78–84.

    Article  CAS  Google Scholar 

  7. Arunkumar V, Prabagaravarthanan R, Bhaskar M. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections among patients admitted in critical care units in a tertiary care hospital. Int J Res Med Sci. 2017;5:2362–6.

    Article  Google Scholar 

  8. McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90:269–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 1999;285:760–3.

    Article  CAS  Google Scholar 

  10. Zhang J, Liu H, Zhu K, Gong S, Dramsi S, Wang YT, et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci USA. 2014;111:13517–22.

    Article  CAS  Google Scholar 

  11. Cascioferro S, Totsika M, Schillaci D. Sortase A: an ideal target for anti-virulence drug development. Micro Pathog. 2014;77:105–12.

    Article  CAS  Google Scholar 

  12. Barthels F, Marincola G, Marciniak T, Konhäuser M, Hammerschmidt S, Bierlmeier J, et al. Asymmetric disulfanylbenzamides as irreversible and selective inhibitors of Staphylococcus aureus sortase A. ChemMedChem 2020;15:839–50.

    Article  CAS  Google Scholar 

  13. Spirig T, Weiner EM, Clubb RT. Sortase enzymes in gram-positive bacteria. Mol Microbiol. 2011;82:1044–59.

    Article  CAS  Google Scholar 

  14. Marraffini LA, Dedent AC, Schneewind O. Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev. 2006;70:192–221.

    Article  CAS  Google Scholar 

  15. Cascioferro S, Totsika M, Schillaci D. Sortase A an ideal target for anti-virulence drug development. Micro Pathog. 2014;77:105–12.

    Article  CAS  Google Scholar 

  16. Cascioferro S, Raffa D, Maggio B, Raimondi MV, Schillaci D, Daidone G. Sortase A inhibitors: recent advances and future perspectives. J Med Chem. 2015;58:9108–23.

    Article  CAS  Google Scholar 

  17. Guo Y, Cai S, Gu G, Guo Z, Long Z. Recent progress in the development of sortase A inhibitors as novel anti-bacterial virulence agents. RSC Adv. 2015;5:49880–9.

    Article  CAS  Google Scholar 

  18. Ha MW, Yi SW, Paek SM. Design and synthesis of small molecules as potent Staphylococcus aureus sortase A inhibitors. Antibiotics 2020;9:706.

    Article  CAS  Google Scholar 

  19. Alharthi S, Alavi SE, Moyle PM, Ziora ZM. Sortase A (SrtA) inhibitors as an alternative treatment for superbug infections. Drug Disco Today. 2021;26:2164–72.

    Article  CAS  Google Scholar 

  20. Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting bacterial sortases in search of anti-virulence therapies with low risk of resistance development. Pharmaceuticals 2021;14:415.

    Article  CAS  Google Scholar 

  21. Volynets G, Vyshniakova H, Nitulescu G, Nitulescu GM, Ungurianu A, Margina D, et al. Identification of novel antistaphylococcal hit compounds targeting sortase A. Molecules 2021;26:7095.

    Article  CAS  Google Scholar 

  22. Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 1993;32:2967–78.

    Article  CAS  Google Scholar 

  23. Ewing TJ, Makino S, Skillman AG, Kuntz ID. DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput-Aided Mol Des. 2001;15:411–28.

    Article  CAS  Google Scholar 

  24. Ring CS, Sun E, McKerrow JH, Lee GK, Rosenthal PJ, Kuntz ID, et al. Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA. 1993;90:3583–7.

    Article  CAS  Google Scholar 

  25. Stoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM. Structure-based discovery of inhibitors of thymidylate synthase. Science 1993;259:1445–50.

    Article  Google Scholar 

  26. Zhulenkovs D, Rudevica Z, Jaudzems K, Turks M, Leonchiks A. Discovery and structure-activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase. Bioorg Med Chem. 2014;22:5988–6003.

    Article  CAS  Google Scholar 

  27. Yakovenko OY, Oliferenko A, Golub A, Bdzhola V, Yarmoluk S. The new method of distribution integrals evaluations for high throughput virtual screening. Ukr Bioorg Acta. 2007;1:52–62.

    Google Scholar 

  28. Yakovenko O, Oliferenko AA, Bdzhola VG, Palyulin VA, Zefirov NS. Kirchhoff atomic charges fitted to multipole moments: implementation for a virtual scrrening system. J Comput Chem. 2008;29:1332–43.

    Article  CAS  Google Scholar 

  29. Kovalenko OP, Volynets GP, Rybak MY, Starosyla SA, Gudzera OI, Lukashov SS, et al. Dual-target inhibitors of mycobacterial aminoacyl-tRNA synthetases among N-benzylidene-N’-thiazol-2-yl-hydrazines. Medchemcomm 2019;10:2161–9.

    Article  CAS  Google Scholar 

  30. Discovery Studio Visualizer 4.0. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/visualization-download.php, (accessed May 2019).

  31. Suree N, Liew CK, Villareal VA, Thieu W, Fadeev EA, Clemens JJ, et al. The structure of the Staphylococcus aureus sortase-substrate complex reveals how the universally conserved LPXTG sorting signal is recognized. J Biol Chem. 2009;284:24465–77.

    Article  CAS  Google Scholar 

  32. We used a database of commercially available compounds (Otava Ltd., http://www.otavachemicals.com/).

  33. Schmohl L, Bierlmeier J, von Kügelgen N, Kurz L, Reis P, Barthels F, et al. Identification of sortase substrates by specificity profiling. Bioorg Med Chem 2017;25:5002–7.

    Article  CAS  Google Scholar 

  34. Klein P, Barthels F, Johe P, Wagner A, Tenzer S, Distler U, et al. Naphthoquinones as covalent reversible inhibitors of cysteine proteases – studies on inhibition mechanism and kinetics. Molecules 2020;252:064.

    Google Scholar 

  35. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance, Version 1.0, December Effect of Combination l-Citrulline and Metformin Treatment on Motor Function in Patients With Duchenne Muscular Dystrophy: A Randomized Clinical Trial, JAMA network open, 2013, 2, 1914171.

  36. Moshynets OV, Spiers AJ. Viewing biofilms within the larger context of bacterial aggregations. In Biofilms: InTech Press; 2016. p. 3-22.

  37. Moshynets O, Chernii S, Chernii V, Losytskyy M, Karakhim S, Czerwieniec R, et al. Fluorescent β-ketoenole AmyGreen dye for visualization of amyloid components of bacterial biofilms. Methods Appl Fluoresc. 2020;8:035006.

    Article  CAS  Google Scholar 

  38. Hu P, Huang P, Chen MW. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol. 2013;58:1343–8.

    Article  CAS  Google Scholar 

  39. Huang P, Hu P, Zhou SY, Li Q, Chen WM. Morin inhibits sortase A and subsequent biofilm formation in Streptococcus mutans. Curr Microbiol. 2014;68:47–52.

    Article  CAS  Google Scholar 

  40. Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, et al. Quercetin impairs Streptococcus pneumonia biofilm formation by inhibiting sortase A activity. J Cell Mol Med. 2018;22:6228–37.

    Article  CAS  Google Scholar 

  41. Thappeta KRV, Zhao LN, Nge CE, Crasta S, Leong CY, Ng V, et al. In-silico identified new natural sortase A inhibitors disrupt S. aureus biofilm formation. Int J Mol Sci. 2020;21:8601.

    Article  CAS  Google Scholar 

  42. Wang L, Wang G, Qu H, Wang K, Jing S, Guan S, et al. Taxifolin, an inhibitor of sortase A, interferes with the adhesion of methicillin-resistant Staphylococcal aureus. Front Microbiol. 2021;12:686864.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galyna P. Volynets.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volynets, G.P., Barthels, F., Hammerschmidt, S.J. et al. Identification of novel small-molecular inhibitors of Staphylococcus aureus sortase A using hybrid virtual screening. J Antibiot 75, 321–332 (2022). https://doi.org/10.1038/s41429-022-00524-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-022-00524-8

This article is cited by

Search

Quick links