Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actinoplanes kirromycinicus sp. nov., isolated from soil

Abstract

A novel actinomycete, designated as TPMA0078T, was isolated from a soil sample collected in Shinjuku, Tokyo, Japan. 16S rRNA gene sequence analysis indicated that strain TPMA0078T belongs to the genus Actinoplanes and is closely related to Actinoplanes regularis IFO 12514T (99.86% 16S rRNA gene sequence similarity). The spores of strain TPMA0078T were motile, and the sporangia were cylindrical. The diamino acids in the cell wall peptidoglycan of strain TPMA0078T were meso-diaminopimelic acid and 3OH-meso-diaminopimelic acid. Whole-cell sugars were glucose and mannose, with galactose as a minor component. The major cellular fatty acids identified were iso-C15:0, iso-C16:0, and anteiso-C17:0. The predominant menaquinone was MK-9(H4), and the principal polar lipid was phosphatidylethanolamine. These chemotaxonomic properties of strain TPMA0078T were consistent with those of Actinoplanes. Meanwhile, digital DNA–DNA hybridization and average nucleotide identity values showed low relatedness between strain TPMA0078T and A. regularis NBRC 12514T. Furthermore, several phenotypic properties of strain TPMA0078T distinguished it from those of closely related species. Based on its genotypic and phenotypic characteristics, strain TPMA0078T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes kirromycinicus sp. nov. is proposed. The type strain is TPMA0078T (=NBRC 116422T = TBRC 18262T).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Couch JN. Actinoplanes, a new genus of the Actinomycetales. J Elisha Mitchell Sci Soc. 1950;66:87–92.

    Google Scholar 

  2. Stackebrandt E, Kroppenstedt RM. Union of the genera Actinoplanes couch, Ampullariella couch, and Amorphosporangium couch in a redefined genus Actinoplanes. Syst Appl Microbiol. 1987;9:110–4.

    Article  CAS  Google Scholar 

  3. Marcone GL, et al. Classification of Actinoplanes sp. ATCC 33076, an actinomycete that produces the glycolipodepsipeptide antibiotic ramoplanin, as Actinoplanes ramoplaninifer sp. nov. Int J Syst Evol Microbiol. 2017;67:4181–8.

    Article  CAS  PubMed  Google Scholar 

  4. Habib N, et al. Actinoplanes deserti sp. nov., isolated from a desert soil sample. Antonie Van Leeuwenhoek. 2018;111:2303–10.

    Article  CAS  PubMed  Google Scholar 

  5. Luo X, et al. Actinoplanes flavus sp. nov., a novel cellulase-producing actinobacterium isolated from coconut palm rhizosphere soil. Int J Syst Evol Microbiol. 2021;71:004990.

    Article  CAS  Google Scholar 

  6. Ding L-M, et al. Three novel Actinoplanes species isolated by using polyaspartic acid as a water-retaining agent for the enrichment in situ. Int J Syst Evol Microbiol. 2023;73:005705.

    Article  CAS  Google Scholar 

  7. Goodfellow M, Stanton LJ, Simpson K, Minnikin DE. Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol. 1990;136:19–36.

    Article  Google Scholar 

  8. Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol. 2001;51:2119–25.

    Article  CAS  PubMed  Google Scholar 

  9. Sazak A, Sahin N, Camas M. Actinoplanes abujensis sp. nov., isolated from Nigerian arid soil. Int J Syst Evol Microbiol. 2012;62:960–5.

    Article  CAS  PubMed  Google Scholar 

  10. Bardone MR, Paternoster M, Coronelli C. Teichomycins, new antibiotics from Actinoplanes teichomyceticus nov. sp. II. Extraction and chemical characterization. J Antibiot. 1978;31:170–7.

    Article  CAS  Google Scholar 

  11. Debono M, et al. Actaplanin, new glycopeptide antibiotics produced by Actinoplanes missouriensis. The isolation and preliminary chemical characterization of actaplanin. J Antibiot. 1984;37:85–95.

    Article  CAS  Google Scholar 

  12. Wagman GH, et al. New polyene antifungal antibiotic produced by a species of Actinoplanes. Antimicrob Agents Chemother. 1975;7:457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber T, et al. Molecular analysis of the kirromycin biosynthetic gene cluster revealed β-alanine as precursor of the pyridone moiety. Chem Biol. 2008;15:175–88.

    Article  CAS  PubMed  Google Scholar 

  14. Wolf H, Chinali G, Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci USA 1974;71:4910–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beretta G, Le Monnier F, Selva E, Marinelli F. A novel producer of the antibiotic kirromycin belonging to the genus Actinoplanes. J Antibiot. 1993;46:1175–7.

    Article  CAS  Google Scholar 

  16. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article  Google Scholar 

  17. Wakisaka Y, Kawamura Y, Yasuda Y, Koizumi K, Nishimoto Y. A selective isolation procedure for Micromonospora. J Antibiot. 1982;35:822–36.

    Article  CAS  Google Scholar 

  18. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta. 1963;72:619–29.

    Article  CAS  PubMed  Google Scholar 

  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    Article  CAS  PubMed  Google Scholar 

  21. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. J Mol Biol Evol. 1987;4:406–25.

    CAS  Google Scholar 

  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article  CAS  PubMed  Google Scholar 

  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool. 1971;20:406–16.

    Article  Google Scholar 

  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  PubMed  Google Scholar 

  26. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Myers EW, et al. A whole-genome assembly of Drosophila. Science. 2000;287:2196–204.

    Article  CAS  PubMed  Google Scholar 

  29. Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chin CS, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9.

    Article  CAS  PubMed  Google Scholar 

  31. Blin K, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017;45:36–41.

    Article  Google Scholar 

  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.

    Article  Google Scholar 

  33. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.

    Article  CAS  PubMed  Google Scholar 

  34. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. J Ferment Technol. 1987;65:501–9.

    Article  CAS  Google Scholar 

  37. Uchida K, et al. Characterization of Actinoplanes missouriensis spore flagella. Appl Environ Microbiol. 2011;77:2559–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kammanee S, et al. Saccharopolyspora oryzae sp. nov., isolated from rhizosphere soil of the wild rice species Oryza rufipogon. J Antibiot. 2023;76:658–64.

    Article  CAS  Google Scholar 

  39. Pridham TG, Gottlieb D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J Bacteriol. 1948;56:107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hamada M, et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot. 2012;65:427–31.

    Article  CAS  Google Scholar 

  41. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol. 1974;28:226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minnikin DE, et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–41.

    Article  CAS  Google Scholar 

  43. Sasser M. MIDI technical note 101. Identification of bacteria by gas chromatography of cellular fatty acids. Newark: DE MIDI inc; 1990.

  44. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005;102:2567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol. 2014;64:316–24.

    Article  PubMed  Google Scholar 

  47. Robertsen HL, et al. Filling the gaps in the kirromycin biosynthesis: deciphering the role of genes involved in ethylmalonyl-CoA supply and tailoring reactions. Sci Rep. 2018;8:3230.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Otani S, Takatsu M, Nakano M, Kasai S, Miura R. Letter: roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot. 1974;27:86–7.

    Article  CAS  Google Scholar 

  49. Awakawa T, et al. Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis. Chembiochem. 2011;12:439–48.

    Article  CAS  PubMed  Google Scholar 

  50. Yim G, et al. Harnessing the synthetic capabilities of glycopeptide antibiotic tailoring enzymes: characterization of the UK-68,597 biosynthetic cluster. Chembiochem. 2014;15:2613–23.

    Article  CAS  PubMed  Google Scholar 

  51. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported in part by Grants-in-Aid for the Toho University Grant for Research Initiative Program (TUGRIP) from Toho University (to YI and YA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yohei Iizaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Iizaka, Y., Hamada, M. et al. Actinoplanes kirromycinicus sp. nov., isolated from soil. J Antibiot 77, 657–664 (2024). https://doi.org/10.1038/s41429-024-00756-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00756-w

Search

Quick links