Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Herbidomicins, two pairs of polyketide tautomers produced by an actinomycete of the genus Herbidospora

Abstract

Herbidospora is one of the underexplored actinomycete genera from which only a limited number of secondary metabolites are reported. In our continuing investigation on less explored actinomycetes, a liquid culture of Herbidospora sp. RD 11066 was found to contain unknown metabolites that had no match in our in-house UV database. Chromatographic separation and following structural analysis using NMR and MS identified these metabolites to be chromanone and chromene derivatives, which were respectively composed of an inseparable mixture of two isomeric forms. The former polyketides, designated to be herbidomicins A1 (1) and A2 (2), are positional isomers in terms of a methyl substituent on an aromatic ring that mutually interconvert by acetal exchange by two phenolic hydroxy groups. The latter pair, herbidomicins B1 (3) and B2 (4), is Z/E-isomers regarding an enol ether double bond. Herbidomicins 14 were weakly antifungal against a dermatophytic fungus Trichophyton rubrum and were moderately cytotoxic against murine leukemia P388 cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Meier-Kolthoff JP, et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol Mol Biol Rev. 2015;80:1–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol. 2012;32:108–32.

    Article  CAS  PubMed  Google Scholar 

  3. Saito S, Atsumi K, Zhou T, Fukaya K, Urabe D, Oku N, et al. A cyclopeptide and three oligomycin-class polyketides produced by an underexplored actinomycete of the genus Pseudosporangium. Beilstein J Org Chem. 2020;6:1100–10.

    Article  Google Scholar 

  4. Lu S, Zhou T, Fukaya K, Harunari E, Oku N, Urabe D, et al. Krasilnikolides A and B and detalosylkrasilnikolide A, cytotoxic 20-membered macrolides from the genus Krasilnikovia: assignment of anomeric configuration by J-based configuration analysis. J Nat Prod. 2022;85:2796–803.

    Article  CAS  PubMed  Google Scholar 

  5. Liu C, Zhang Z, Fukaya K, Urabe D, Harunari E, Oku N, et al. Catellatolactams A–C, plant growth-promoting ansamacrolactam from a rare actinomycete of the genus Catellatospora. J Nat Prod. 2022;85:1993–9.

    Article  CAS  PubMed  Google Scholar 

  6. Liu C, Zhang Z, Fukaya K, Oku N, Harunari E, Urabe D, et al. Isolation and structure determination of allopteridic acids A–C and allokutzmicin from an unexplored actinomycete of the genus Allokutzneria. J Antibiot. 2023;76:305–15.

    Article  CAS  Google Scholar 

  7. Kudo T, Itoh T, Miyadoh S, Shomura T, Seino A. Herbidospora gen. nov., new genus of the family Streptosporangiaceae Goodfellow et al. 1990. Int J Syst Bacteriol. 1993;43:319–28.

    Article  CAS  PubMed  Google Scholar 

  8. Kudo T. Establisment of the genus Herbidospora and some new taxa of actinomycetes. Actinomycetol. 1995;9:66–74.

    Article  Google Scholar 

  9. Tseng M, Yang SF, Yuan GF. Herbidospora yilanensis sp. nov. and Herbidospora daliensis sp. nov., from sediment. Int J Syst Evol Microbiol. 2010;60:1168–72.

    Article  CAS  PubMed  Google Scholar 

  10. Boondaeng A, Suriyachadkun C, Ishida Y, Tamura T, Tokuyama S, Kitpreechavanich V. Herbidospora sakaeratensis sp. nov., isolated from soil, and reclassification of Streptosporangium claviforme as a later synonym of Herbidospora cretacea. Int J Syst Evol Microbiol. 2011;61:777–80.

    Article  CAS  PubMed  Google Scholar 

  11. Ara I, Tsetseg B, Daram D, Suto M, Ando K. Herbidospora mongoliensis sp. nov., isolated from soil, and reclassification of Herbidospora osyris and Streptosporangium claviforme as synonyms of Herbidospora cretacea. Int J Syst Evol Microbiol. 2012;62:2322–9.

    Article  CAS  PubMed  Google Scholar 

  12. Niemhom N, Thawai C. Herbidospora soli sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2018;68:294–8.

    Article  CAS  PubMed  Google Scholar 

  13. Han L, Yu M, Zhao J, Jiang H, Guo X, Shen G, et al. Herbidospora galbida sp. nov., a novel actinobacterium isolated from soil. Int J Syst Evol Microbiol. 2020;70:1364–71.

    Article  CAS  PubMed  Google Scholar 

  14. Yu M, Zhou R, Li J, Han L, Wang H, Zhang S, et al. Herbidospora solisilvae sp. nov., a novel cellulose-degrading actinobacterium isolated from forest soil. Int J Syst Evol Microbiol. 2021;114:581–90.

    CAS  Google Scholar 

  15. Cheng MJ, Wu MD, Chen JJ, Su YS, Kuo YH. Secondary metabolites with antimycobacterial activities from one actinobacteria: Herbidospora yilanensis. Molecules. 2021;26:6236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen JJ, Lee TH, Cheng MJ. Secondary metabolites with anti-inflammatory activities from an actinobacteria Herbidospora daliensis. Molecules. 2022;27:1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Biological Resource Center, NITE (NBRC). https://www.nite.go.jp/nbrc/ (accessed Sep. 25, 2020).

  18. Tanemura K, Suzuki T, Horaguchi T, Sudo M. Synthesis and properties of furo[4,3,2-de][1]benzopyran. J Heterocycl Chem. 1991;28:305-9.

  19. Singh J, Zeller W, Zhou N, Hategan G, Mishra RK, Polozov A, et al. Structure−activity relationship studies leading to the identification of (2E)-3-[l-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-lH-indol-7-yl]-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG-041), a potent and selective prostanoid EP3 receptor antagonist, as a novel antiplatelet agent that does not prolong bleeding. J Med Chem. 2010:53;18–36.

  20. Katritzky, AR, Denisko, OV Heterocyclic compound. Encyclopedia Britannica, 1 December 2023. https://www.britannica.com/science/heterocyclic-compound (accessed January 19, 2024).

  21. Dangles O, Fenger JA. The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules. 2018;23:1970.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mattioli R, Francioso A, Mosca L, Silva P. Anthocyanins: a comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules. 2020;25:3809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsunaga H, Kamisuki S, Kaneko M, Yamaguchi Y, Takeuchi T, Watashi K, et al. Isolation and structure of vanitaracin A, a novel anti-hepatitis B virus compound from Talaromyces sp. Bioorg Med Chem Lett. 2015;25:4325–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ma J, Cao B, Chen X, Xu M, Bi X, Guan P, et al. Violacin A, a new chromanone produced by Streptomyces violaceoruber and its anti-inflammatory activity. Bioorg Med Chem Lett. 2018;28:947–51.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang L, Pu H, Xiang J, Su M, Yan X, Yang D, et al. Huanglongmycin A–C, cytotoxic polyketides biosynthesized by a putative type II polyketide synthase from Streptomyces sp. CB09001. Front Chem. 2018;6:254.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang H, Xiao X, Conte MM, Khalila Z, Capon RJ, Spiralisones A–D acylphloroglucinol hemiketals from an Australian marine brown alga, Zonaria spiralis. Org Biomol Chem 2012;10:9671–6.

    Article  CAS  PubMed  Google Scholar 

  27. Suthiwong J, Sribuhom T, Wongphakham P, Senawong T, Yenjai C. Cytotoxicity of acylphloroglucinol derivatives from the fruits of Horsfieldia irya. Nat Prod Res. 2021;35:4930–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hu M, Yang XQ, Zhou QY, Li SQ, Wang BY, Ruan BH, et al. Benzopyran derivatives from endophytic Daldinia eschscholtzii JC-15 in Dendrobium chrysotoxum and their bioactivities. Nat Prod Res. 2019;33:1431–5.

    Article  CAS  PubMed  Google Scholar 

  29. Ding L, Maier A, Fiebig HH, Görls H, Lin WH, Peschel G, et al. Divergolides A–D from a mangrove endophyte reveal an unparalleled plasticity in ansa-macrolide biosynthesis. Angew Chem Int Ed. 2011;50:1630–4.

    Article  CAS  Google Scholar 

  30. Dreyer DL, Munderloh KP, Thiessen WE. Extractives of Dalea species (Leguminosae). Tetrahedron. 1975;31:287–93.

    Article  CAS  Google Scholar 

  31. Roitman JN, Jurd L. Biomimetic synthesis of dalrubone and of a new pigment from Dalea emoryi. Phytochemistry. 1978;1978:161–3.

    Article  Google Scholar 

  32. Zhang H, Li X, Ashendel CL, Chang C. Bioactive compounds from Psorothamnus junceus. J Nat Prod. 2000;63:1244–8.

    Article  CAS  PubMed  Google Scholar 

  33. Facundo VA, Sá AL, Silva SAF, Morais SM, Matos CRR, Braz-Filho R. Three new natural cyclopentenedione derivatives from Piper carnoconnectivum. J Braz Chem Soc. 2004;15:140–5.

    Article  CAS  Google Scholar 

  34. Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A–C, antimicrobial and cytotoxic alkanoyl imidazoles from a marine gammaproteobacterium microbulbifers species. J Nat Prod. 2020;83:1295–9.

    Article  PubMed  Google Scholar 

  35. Sharma AR, Zhou T, Harunari E, Oku N, Trianto A, Igarashi Y. Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot. 2019;72:634–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Drs. Tao Zhou and Md. Rokon Ul Karim for their assistance in structure determination and cytotoxicity evaluation and Prof. Dr. D. Urabe for valuable discussion on tautomerism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Igarashi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, F.M., Harunari, E., Oku, N. et al. Herbidomicins, two pairs of polyketide tautomers produced by an actinomycete of the genus Herbidospora. J Antibiot 77, 647–652 (2024). https://doi.org/10.1038/s41429-024-00760-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-024-00760-0

Search

Quick links