Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Micrococcins from Peribacillus sp. KDM594; efficacy against vancomycin-resistant enterococci and drug metabolism in a silkworm model

Abstract

The screening of antibiotics derived from microbial resources to combat vancomycin-resistant enterococci (VRE) revealed that a culture of marine-derived Peribacillus sp. KDM594 exhibited significant therapeutic efficacy in an infected in vivo-mimic silkworm model. Bioassay-guided purification led to the isolation of micrococcins P1 (1) and P2 (2), which exhibited potent antimicrobial activities against Gram-positive bacteria, including VRE, methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium spp., with MIC values ranging from 0.25 to 8.0 µg ml−1 using the microdilution method. In the silkworm models infected with VRE or MRSA, 1 and 2 exerted moderate therapeutic effects, with ED50 values ranging from 3.2 to 51 µg larva−1 g−1. Furthermore, a pharmacokinetic analysis revealed that 2 was metabolized to 1 in the silkworm hemolymph, and their elimination half-lives were 3.2 and 3.0 h, respectively. These results suggest that micrococcins are promising lead compounds for the development of anti-VRE and MRSA drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO Bacterial Priority Pathogens List: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. WHO; 2024.

  2. O’Neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 1–16 2014.

  3. Kristich CJ, Rice LB, Arias CA. Enterococci: from commensals to leading causes of drug resistant infection. Boston, MA: Massachusetts Eye and Ear Infirmary; 2014.

  4. Ahmed MO, Baptiste KE. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24:590–606.

    Article  CAS  PubMed  Google Scholar 

  5. Uchida R, Iwatsuki M, Kim YP, Ohte S, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. I. Fermentation, isolation and biological properties. J Antibiot. 2010;63:151–155.

    Article  CAS  Google Scholar 

  6. Uchida R, Iwatsuki M, Kim YP, Ōmura S, Tomoda H. Nosokomycins, new antibiotics, discovered in an in vivo-mimic infection model using silkworm larvae. II. Structure elucidation. J Antibiot. 2010;63:157–163.

    Article  CAS  Google Scholar 

  7. Uchida R, Hanaki H, Matsui H, Hamamoto H, Sekimizu K, Iwatsuki M, Kim YP, Tomoda H. In vitro and in vivo anti-MRSA activities of nosokomycins. Drug Discov Ther. 2014;8:249–254.

    Article  PubMed  Google Scholar 

  8. Hamamoto H, Urai M, Ishii K, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015;11:127–133.

    Article  CAS  PubMed  Google Scholar 

  9. Uchida R, Namiguchi S, Ishijima H, Tomoda H. Therapeutic effects of three trichothecenes in the silkworm infection assay with Candida albicans. Drug Discov Ther. 2016;20:44–48.

    Article  Google Scholar 

  10. Tominaga T, Uchida R, Koyama N, Tomoda H. Anti-Rhizopus activity of tanzawaic acids produced by the hot spring-derived fungus Penicillium sp. BF-0005. J Antibiot. 2018;71:626–632.

    Article  CAS  Google Scholar 

  11. Yagi A, Uchida R, Hamamoto H, Sekimizu K, Kimura K, Tomoda H. Anti-Mycobacterium activity of microbial peptides in a silkworm infection model with Mycobacterium smegmatis. J Antibiot. 2017;70:685–690.

    Article  CAS  Google Scholar 

  12. Hosoda K, Koyama N, Hamamoto H, Yagi A, Uchida R, Kanamoto A, Tomoda H. Evaluation of anti-mycobacterial compounds in a silkworm infection model with Mycobacteroides abscessus. Molecules. 2020;25:4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yagi A, Yamazaki H, Terahara T, Yang T, Hamamoto H, Imada C, Tomoda H, Uchida R. Development of an in vivo-mimic silkworm infection model with Mycobacterium avium complex. Drug Discov Ther. 2021;14:287–295.

    Article  PubMed  Google Scholar 

  14. Yagi A, Fujiwara M, Sato M, Abe Y, Uchida R. New liposidomycin congeners produced by Streptomyces sp. TMPU-20A065, anti-Mycobacterium avium complex agents with therapeutic efficacy in a silkworm infection model. J Antibiot. 2024;77:412–421.

    Article  CAS  Google Scholar 

  15. Yagi A, Sato T, Kano C, Igari T, Oshima N, Ohte S, Ohshiro T, Uchida R. Evaluation of tirandamycins with selective activity against Enterococci in the silkworm infection model. J Antibiot. 2025 https://doi.org/10.1038/s41429-024-00805-4.

  16. Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, Santa T, Sekimizu K. Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother. 2004;48:774–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamamoto H, Tonoike A, Narushima K, Horie R, Sekimizu K. Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol. 2009;149:334–339.

    Article  PubMed  Google Scholar 

  18. Hamamoto H, Horie R, Sekimizu K. Pharmacokinetics of anti-infectious reagents in silkworms. Sci Rep. 2019;9:9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bycroft BW, Gowland MS. The structures of the highly modified peptide antibiotics micrococcin P1 and P2. J Chem Soc Chem Commun. 1978;6:256–258.

    Article  Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI): Reference methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A11. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2019.

  21. Hosoda K, Koyama N, Kanamoto A, Tomoda H. Discovery of nosiheptide, griseoviridin, and etamycin as potent anti-mycobacterial agents against Mycobacterium avium complex. Molecules. 2019;24:1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang W, Park KH, Lee J, Oh E, Park C, Kang E, Lee J, Kang H. A new thiopeptide antibiotic, micrococcin P3, from a marine-derived strain of the bacterium Bacillus stratosphericus. Molecules. 2020;25:4383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hashimoto M, Murakami T, Funahashi K, Tokunaga T, Nihei K, Okuno T, Kimura T, Naoki H, Himeno H. An RNA polymerase inhibitor, cyclothiazomycin B1, and its isomer. Bioorg Med Chem. 2006;14:8259–8270.

    Article  CAS  PubMed  Google Scholar 

  24. Su TL. Micrococcin, an antibacterial substance formed by a strain of Micrococcus. Br J Exp Pathol. 1948;29:473–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lefranc D, Ciufolini MA. Total synthesis and stereochemical assignment of Micrococcin P1. Angew Chem Int Ed. 2009;48:4198–4201.

    Article  CAS  Google Scholar 

  26. Bennallack PR, Bewley KD, Burlingame MA, Robison RA, Miller SM, Griffitts JS. Reconstitution and minimization of a micrococcin biosynthetic pathway in Bacillus subtilis. J Bacteriol. 2016;198:2431–2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bewley KD, Bennallack PR, Burlingame MA, Robison RA, Griffitts JS, Miller SM. Capture of micrococcin biosynthetic intermediates reveals C-terminal processing as an obligatory step for in vivo maturation. Proc Natl Acad Sci. 2016;113:12450–12455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calvopina-Chavez DG, Bursey DM, Tseng Y-J, et al. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN. Appl Environ Microbiol. 2024;90:e0024424.

    Article  PubMed  Google Scholar 

  29. Degiacomi G, Personne Y, Mondésert G, et al. Micrococcin P1 - a bactericidal thiopeptide active against Mycobacterium tuberculosis. Tuberculosis. 2016;100:95–101.

    Article  CAS  PubMed  Google Scholar 

  30. Son YJ, Kim YR, Oh SH, Jung S, Ciufolini MA, Hwang HJ, Kwak JH, Pai H. Micrococcin P2 Targets Clostridioides difficile. J Nat Prod. 2022;85:1928–1935.

    Article  CAS  PubMed  Google Scholar 

  31. Park J, Kim LH, Lee JM, Choi S, Son YJ, Hwang HJ, Shin SJ. In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex. Microbiol Spectr. 2023;11:e0182523.

    Article  PubMed  Google Scholar 

  32. Fernández-Fernández R, Lozano C, Fernández-Pérez R, Zarazaga M, Peschel A, Krismer B, Torres C. Detection and evaluation of the antimicrobial activity of Micrococcin P1 isolated from commensal and environmental staphylococcal isolates against MRSA. Int J Antimicrob Agents. 2023;62:106965.

    Article  PubMed  Google Scholar 

  33. Rosendahl G, Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res. 1994;22:357–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim D, Lee J, Shyaka C, et al. Identification of Micrococcin P2-derivatives as antibiotic candidates against two gram-positive pathogens. J Med Chem. 2023;66:14263–14277.

    Article  CAS  PubMed  Google Scholar 

  35. Ohara H, Miyabe Y, Deyashiki Y, Matsuura K, Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem Pharmacol. 1995;50:221–227.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akiho Yagi or Ryuji Uchida.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, A., Sato, M., Kikuchi, K. et al. Micrococcins from Peribacillus sp. KDM594; efficacy against vancomycin-resistant enterococci and drug metabolism in a silkworm model. J Antibiot 78, 481–487 (2025). https://doi.org/10.1038/s41429-025-00838-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00838-3

Search

Quick links