Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tuberculosis drug development; fluoroquinolone structural tailoring

Abstract

Tuberculosis (TB) is a contagious infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). It is transmitted through small particles in the air (<5 µm) expelled by active tuberculosis patients; when inhaled by a new host, they can potentially cause infection. Nowadays, TB is still the major cause of morbidity and mortality by a single infectious agent, this is further exacerbated by the worldwide emergence of multidrug-resistant strains of Mtb. Thus, effective methods of diagnosis, prophylaxis, and new pharmacological therapies must be carried out in order to control this disease. Fluoroquinolones (FQ) are synthetic antibiotics with a broad spectrum against Gram-negative and Gram-positive bacteria, including M. tuberculosis. The treatment with FQ plays an important role in managing drug-resistant tuberculosis. Modifications on FQ structure have been extensively studied, thereby, four generations of FQ have emerged having a broad spectrum of antibacterial properties. These modifications improve the overall efficiency of FQ by increasing tissue penetration, reducing side effects, and addressing emerging bacterial resistance. In this scenario, current trends on FQ research have focused on new synthetic approaches that allow fluoroquinolones to address the worldwide issue of multidrug-resistant tuberculosis. The aim of this review is to highlight the overall effects of newly synthesized FQ molecules having antitubercular activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. Current Res Pharmacol Drug Discov. 2021;2:100037.

    Article  Google Scholar 

  2. Jacobo-Delgado YM, De Jesús-González LA, Rivas-Santiago B. [Tuberculosis: Analysis of the history and development of multiple antibiotic resistance]. Revista Med del Inst Mexicano del Seguro Soc. 2024;62:137.

    Google Scholar 

  3. World Health Organization. Global Tuberculosis Report 2023. 4 Enero 2023 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.

  4. World Health Organization. The End TB Strategy. 2023 Available from: https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy.

  5. Coba-Males MA, Lavecchia MJ, Alcívar-León CD, Santamaría-Aguirre J. Novel Fluoroquinolones with Possible Antibacterial Activity in Gram-Negative Resistant Pathogens: In Silico Drug Discovery. Molecules (Basel, Switzerland). 2023;28:6929.

  6. Litvinjenko S, Magwood O, Wu S, Wei X. Burden of tuberculosis among vulnerable populations worldwide: an overview of systematic reviews. Lancet Infect Dis. 2023;23:1395–407.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel, Switzerland). 2023;16:1615.

  8. World Health Organization. Global tuberculosis report 2020. Glob Tuberc Rep. 2020;2020:1–13.

  9. World Health Organization. Global tuberculosis report 2024. Glob Tuberc Rep. 2024;2024:1–38.

  10. Mahajan R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res. 2013;3:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb, Scotl). 2018;111:20–30.

    Article  CAS  Google Scholar 

  12. Tovar-Nieto AM, Flores-Padilla LE, Rivas-Santiago B, Trujillo-Paez JV, Lara-Ramirez EE, Jacobo-Delgado YM, López-Ramos JE, Rodríguez-Carlos A. The Repurposing of FDA-Approved Drugs as FtsZ Inhibitors against Mycobacterium tuberculosis: An In Silico and In Vitro Study. Microorganisms. 2024;12:1505.

  13. Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE 3rd. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008;322:1392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PLoS One. 2013;8:e57672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munsiff SS, Kambili C, Ahuja SD. Rifapentine for the treatment of pulmonary tuberculosis. Clinical Infect Dis: Off Publ Infect Dis Soc Am. 2006;43:1468–75.

    Article  CAS  Google Scholar 

  16. Gillespie SH. The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev. 2016;25:19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Jager VR, Dawson R, van Niekerk C, Hutchings J, Kim J, Vanker N, van der Merwe L, Choi J, Nam K, Diacon AH. Telacebec (Q203), a New Antituberculosis Agent. New Engl J Med. 2020;382:1280–1.

    Article  PubMed  Google Scholar 

  18. Kim S, Scanga CA, Miranda Silva C, Zimmerman M, Causgrove C, Stein B, Dartois V, Peloquin CA, Graham E, Louie A, Flynn JL, Schmidt S, Drusano GL. Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. Eur J Pharm Sci. 2020;151:105421.

    Article  CAS  PubMed  Google Scholar 

  19. Meyer FM, Repnik U, Karnaukhova E, Schubert K, Bramkamp M. Effects of benzothiazinone and ethambutol on the integrity of the corynebacterial cell envelope. Cell Surf. 2023;10:100116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong JW, Jung SJ, Lee HH, Kim YZ, Park TK, Cho YL, Chae SE, Baek SY, Woo SH, Lee HS, Kwak JH. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother. 2010;54:5359–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Diacon AH, Barry CE 3rd, Carlton A, Chen RY, Davies M, de Jager V, Fletcher K, Koh G, Kontsevaya I, Heyckendorf J, Lange C, Reimann M, Penman SL, Scott R, Maher-Edwards G, Tiberi S, Vlasakakis G, Upton CM, Aguirre DB. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: a phase 2a open-label, randomized trial. Nat Med. 2024;30:896–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Talley AK, Thurston A, Moore G, Gupta VK, Satterfield M, Manyak E, Stokes S, Dane A, Melnick D. First-in-Human Evaluation of the Safety, Tolerability, and Pharmacokinetics of SPR720, a Novel Oral Bacterial DNA Gyrase (GyrB) Inhibitor for Mycobacterial Infections. Antimicrob Agents Chemother. 2021;65:e0120821.

    Article  PubMed  Google Scholar 

  23. Yao R, Wang B, Fu L, Li L, You K, Li YG, Lu Y. Sudapyridine (WX-081), a Novel Compound against Mycobacterium tuberculosis. Microbiol Spectr. 2022;10:e0247721.

    Article  PubMed  Google Scholar 

  24. Roubert C, Fontaine E, Upton AM. Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol. 2022;12:1029044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun Integr Biol. 2009;2:215–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, Demoitie MA, Diacon A, Evans TG, Gillard P, Hellstrom E, Innes JC, Lempicki M, Malahleha M, Martinson N, Mesia Vela D, Muyoyeta M, Nduba V, Pascal TG, Tameris M, Thienemann F, Wilkinson RJ, Roman F. Final Analysis of a Trial of M72/AS01(E) Vaccine to Prevent Tuberculosis. New Engl J Med. 2019;381:2429–39.

    Article  CAS  PubMed  Google Scholar 

  27. Blossey AM, Brückner S, May M, Parzmair GP, Sharma H, Shaligram U, Grode L, Kaufmann SHE, Netea MG, Schindler C. VPM1002 as Prophylaxis Against Severe Respiratory Tract Infections Including Coronavirus Disease 2019 in the Elderly: A Phase 3 Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Study. Clinical Infect Dis: Off Publ Infect Dis Soc Am. 2023;76:1304–10.

    Article  Google Scholar 

  28. Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. Monatshefte für Chem - Chem Monthly. 2018;149:1199–245.

    Article  CAS  Google Scholar 

  29. Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. MedChemComm. 2019;10:1719–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Molecular Diversity. 2025;29:711–37.

    Article  CAS  PubMed  Google Scholar 

  31. Ball P. Quinolone generations: natural history or natural selection?. Journal Antimicrobial Chemother. 2000;46:17–24.

    Article  CAS  Google Scholar 

  32. Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. In.Molecules (Basel, Switzerland); 2021.

  33. Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015;5:a017863.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Organización Panamericana de la S, Organización Panamericana de la S. Manual operativo de la OMS sobre la tuberculosis. Módulo 1: Prevención. Tratamiento preventivo de la tuberculosis. In. Washington, D.C: OPS; 2022.

  35. WHO Guidelines Approved by the Guidelines Review Committee. In. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva: World Health Organization Copyright © World Health Organization 2014; 2014.

  36. Sarathy J, Blanc L, Alvarez-Cabrera N, O’Brien P, Dias-Freedman I, Mina M, Zimmerman M, Kaya F, Ho Liang HP, Prideaux B, Dietzold J, Salgame P, Savic RM, Linderman J, Kirschner D, Pienaar E, Dartois V. Fluoroquinolone Efficacy against Tuberculosis Is Driven by Penetration into Lesions and Activity against Resident Bacterial Populations. Antimicrob Agents Chemother. 2019;63:e02516-18.

  37. Alós J-I. Quinolonas. Enfermedades Infecciosas y Microbiología Clínica. 2009;27:290–7.

    Article  PubMed  Google Scholar 

  38. Sepcić K, Perković O, Turel I, Sepcić J. [Adverse effects and interactions of fluoroquinolones]. Lijecnicki Vjesn. 2009;131:74–80.

    Google Scholar 

  39. Chien J-Y, Chiu W-Y, Chien S-T, Chiang C-J, Yu C-J, Hsueh P-R. Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrobial Agents Chemother. 2016;60:2090–6.

    Article  CAS  Google Scholar 

  40. Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45.

    Article  CAS  PubMed  Google Scholar 

  41. Viñuelas-Bayón J, Vitoria MA, Samper S. Diagnóstico rápido de la tuberculosis. Detección de mecanismos de resistencia. Enfermedades Infecciosas y Microbiología Clínica. 2017;35:520–8.

    Article  PubMed  Google Scholar 

  42. Carta A, Bua A, Corona P, Piras S, Briguglio I, Molicotti P, Zanetti S, Laurini E, Aulic S, Fermeglia M, Pricl S. Design, synthesis and antitubercular activity of 4-alkoxy-triazoloquinolones able to inhibit the M. tuberculosis DNA gyrase. European J Medicinal Chem. 2019;161:399–415.

    Article  CAS  Google Scholar 

  43. Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Legoabe LJ, Khanye SD. Quinolone-isoniazid hybrids: synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. Medchemcomm. 2019;10:326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Khanye SD. New Quinolone-Based Thiosemicarbazones Showing Activity Against Plasmodium falciparum and Mycobacterium tuberculosis. Molecules (Basel, Switzerland); 2019.4;24:1740.

  45. Beteck RM, Jordaan A, Swart T, Van Der Kooy F, Warner DF, Hoppe HC, Legoabe LJ. 6-Nitro-1-benzylquinolones exhibiting specific antitubercular activity. Chem Biol Drug Des. 2020;96:1387–94.

    Article  CAS  PubMed  Google Scholar 

  46. Coulibaly S, Cimino M, Ouattara M, Lecoutey C, Buchieri MV, Alonso-Rodriguez N, Briffotaux J, Mornico D, Gicquel B, Rochais C, Dallemagne P. Phenanthrolinic analogs of quinolones show antibacterial activity against M. tuberculosis. European J Medicinal Chem. 2020;207:112821.

    Article  CAS  Google Scholar 

  47. Alsayed SSR, Lun S, Luna G, Beh CC, Payne AD, Foster N, Bishai WR, Gunosewoyo H. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Adv. 2020;10:7523–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules (Basel, Switzerland); 2022.12;27:8807.

  49. Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Beteck RM. Quinolone analogues of benzothiazinone: Synthesis, antitubercular structure-activity relationship and ADME profiling. European J Medicinal Chem. 2023;258:115539.

    Article  CAS  Google Scholar 

  50. Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. Advances Exp Med Biol. 2020;1282:37–69.

    Article  CAS  Google Scholar 

  51. Marvadi SK, Krishna VS, Surineni G, Srilakshmi Reshma R, Sridhar B, Sriram D, Kantevari S. Synthesis, in vitro, and in vivo (Zebra fish) antitubercular activity of 7,8-dihydroquinolin-5(6H)-ylidenehydrazinecarbothioamides. Bioorganic Chem. 2020;96:103626.

    Article  Google Scholar 

  52. Alegaon S, Kashniyal K, Kuncolienkar S, Kavalapure R, Salve P, Palled M, Suryawanshi S, Jalalpure S. Synthesis and biological evaluation of some 4-aminoquinoline derivatives as potential antitubercular agents. Future J Pharm Sci. 2020;6:2.

    Article  Google Scholar 

  53. T G S, Subramanian S, Eswaran S. Design, Synthesis and Study of Antibacterial and Antitubercular Activity of Quinoline Hydrazone Hybrids. 2020;26:137-47.

  54. Picconi P, Jeeves R, Moon CW, Jamshidi S, Nahar KS, Laws M, Bacon J, Rahman KM. Noncytotoxic Pyrrolobenzodiazepine-Ciprofloxacin Conjugate with Activity against Mycobacterium tuberculosis. ACS omega. 2019;4:20873–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen R, Zhang H, Ma T, Xue H, Miao Z, Chen L, Shi X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorganic medicinal Chem Lett. 2019;29:2635–7.

    Article  CAS  Google Scholar 

  56. Cilliers P, Seldon R, Smit FJ, Aucamp J, Jordaan A, Warner DF, N’Da DD. Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. Chemical Biol Drug Des. 2019;94:1518–36.

    Article  CAS  Google Scholar 

  57. Liu J, Ren Z, Fan L, Wei J, Tang X, Xu X, Yang D. Design, synthesis, biological evaluation, structure-activity relationship, and toxicity of clinafloxacin-azole conjugates as novel antitubercular agents. Bioorganic Medicinal Chem. 2019;27:175–87.

    Article  CAS  Google Scholar 

  58. Jiang Y, Qian A, Li Y. 1H-1,2,3-Triazole tethered isatin-moxifloxacin: Design, synthesis and in vitro anti-mycobacterial evaluation. Archiv der Pharmazie. 2019;352:1900040.

    Article  Google Scholar 

  59. Türe A, Kulabaş N, Dingiş Sİ, Birgül K, Bozdeveci A, Alpay Karaoğlu Ş, Krishna VS, Sriram D, Küçükgüzel İ. Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorganic Chem. 2019;88:102965.

    Article  Google Scholar 

  60. Gao F, Chen Z, Ma L, Fan Y, Chen L, Lu G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. European J Medicinal Chem. 2019;180:648–55.

    Article  CAS  Google Scholar 

  61. Ding Z, Hou P, Liu B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Archiv der Pharmazie. 2019;352:1900135.

    Article  CAS  Google Scholar 

  62. Ouchi Y, Mukai T, Koide K, Yamaguchi T, Park J-H, Kim H, Yokoyama K, Tamaru A, Gordon SV, Nakajima C, Suzuki Y. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Tuberculosis. 2020;120:101891.

    Article  CAS  PubMed  Google Scholar 

  63. Niveditha N, Begum M, Prathibha D, Sirisha K, Mahender P, Chitra C, Rao VR, Reddy VM, Achaiah G. Design, Synthesis and Pharmacological Evaluation of Some C3 Heterocyclic-Substituted Ciprofloxacin Derivatives as Chimeric Antitubercular Agents. Chemical Pharm Bull. 2020;68:1170–7.

    Article  CAS  Google Scholar 

  64. Qiao M, Ren W, Guo H, Huo F, Shang Y, Wang Y, Gao M, Pang Y. Comparative in vitro susceptibility of a novel fluoroquinolone antibiotic candidate WFQ-228, levofloxacin, and moxifloxacin against Mycobacterium tuberculosis. International J Infect Dis: IJID : Off Publ Int Soc Infect Dis. 2021;106:295–9.

    CAS  Google Scholar 

  65. Aziz HA, Moustafa GAI, Abuo-Rahma GE-DA, Rabea SM, Hauk G, Krishna VS, Sriram D, Berger JM, Abbas SH. Synthesis and antimicrobial evaluation of new nitric oxide-donating fluoroquinolone/oxime hybrids. Archiv der Pharmazie. 2021;354:2000180.

    Article  CAS  Google Scholar 

  66. Chrzanowska A, Struga M, Roszkowski P, Koliński M, Kmiecik S, Jałbrzykowska K, Zabost A, Stefańska J, Augustynowicz-Kopeć E, Wrzosek M, Bielenica A. The Effect of Conjugation of Ciprofloxacin and Moxifloxacin with Fatty Acids on Their Antibacterial and Anticancer Activity. Int J Mol Sci. 2022;23:6261.

  67. Pais JP, Policarpo M, Pires D, Francisco AP, Madureira AM, Testa B, Anes E, Constantino L. Fluoroquinolone Derivatives in the Treatment of Mycobacterium tuberculosis Infection. Pharmaceuticals; 2022;15:1213.

  68. Carta A, Palomba M, Paglietti G, Molicotti P, Paglietti B, Cannas S, Zanetti S. [1,2,3]Triazolo[4,5-h]quinolones. A new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorganic medicinal Chem Lett. 2007;17:4791–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

AMGM had a scholarship by SECIHTI (CVU:1325935).

Funding

The authors declare that no financial support was received for the research, authorship, and/or publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime Cardoso-Ortiz or Adrián Rodríguez-Carlos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Mauricio, A.M., Trujillo-Paez, J.V., Trejo-Martinez, L.A. et al. Tuberculosis drug development; fluoroquinolone structural tailoring. J Antibiot 78, 517–534 (2025). https://doi.org/10.1038/s41429-025-00839-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41429-025-00839-2

Search

Quick links