Abstract
Tuberculosis (TB) is a contagious infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). It is transmitted through small particles in the air (<5 µm) expelled by active tuberculosis patients; when inhaled by a new host, they can potentially cause infection. Nowadays, TB is still the major cause of morbidity and mortality by a single infectious agent, this is further exacerbated by the worldwide emergence of multidrug-resistant strains of Mtb. Thus, effective methods of diagnosis, prophylaxis, and new pharmacological therapies must be carried out in order to control this disease. Fluoroquinolones (FQ) are synthetic antibiotics with a broad spectrum against Gram-negative and Gram-positive bacteria, including M. tuberculosis. The treatment with FQ plays an important role in managing drug-resistant tuberculosis. Modifications on FQ structure have been extensively studied, thereby, four generations of FQ have emerged having a broad spectrum of antibacterial properties. These modifications improve the overall efficiency of FQ by increasing tissue penetration, reducing side effects, and addressing emerging bacterial resistance. In this scenario, current trends on FQ research have focused on new synthetic approaches that allow fluoroquinolones to address the worldwide issue of multidrug-resistant tuberculosis. The aim of this review is to highlight the overall effects of newly synthesized FQ molecules having antitubercular activity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. Current Res Pharmacol Drug Discov. 2021;2:100037.
Jacobo-Delgado YM, De Jesús-González LA, Rivas-Santiago B. [Tuberculosis: Analysis of the history and development of multiple antibiotic resistance]. Revista Med del Inst Mexicano del Seguro Soc. 2024;62:137.
World Health Organization. Global Tuberculosis Report 2023. 4 Enero 2023 Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.
World Health Organization. The End TB Strategy. 2023 Available from: https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy.
Coba-Males MA, Lavecchia MJ, Alcívar-León CD, Santamaría-Aguirre J. Novel Fluoroquinolones with Possible Antibacterial Activity in Gram-Negative Resistant Pathogens: In Silico Drug Discovery. Molecules (Basel, Switzerland). 2023;28:6929.
Litvinjenko S, Magwood O, Wu S, Wei X. Burden of tuberculosis among vulnerable populations worldwide: an overview of systematic reviews. Lancet Infect Dis. 2023;23:1395–407.
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel, Switzerland). 2023;16:1615.
World Health Organization. Global tuberculosis report 2020. Glob Tuberc Rep. 2020;2020:1–13.
World Health Organization. Global tuberculosis report 2024. Glob Tuberc Rep. 2024;2024:1–38.
Mahajan R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res. 2013;3:1–2.
Liu Y, Matsumoto M, Ishida H, Ohguro K, Yoshitake M, Gupta R, Geiter L, Hafkin J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis (Edinb, Scotl). 2018;111:20–30.
Tovar-Nieto AM, Flores-Padilla LE, Rivas-Santiago B, Trujillo-Paez JV, Lara-Ramirez EE, Jacobo-Delgado YM, López-Ramos JE, Rodríguez-Carlos A. The Repurposing of FDA-Approved Drugs as FtsZ Inhibitors against Mycobacterium tuberculosis: An In Silico and In Vitro Study. Microorganisms. 2024;12:1505.
Singh R, Manjunatha U, Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J, Barry CE 3rd. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science. 2008;322:1392–5.
Chen YL, Lehman VN, Averette AF, Perfect JR, Heitman J. Posaconazole exhibits in vitro and in vivo synergistic antifungal activity with caspofungin or FK506 against Candida albicans. PLoS One. 2013;8:e57672.
Munsiff SS, Kambili C, Ahuja SD. Rifapentine for the treatment of pulmonary tuberculosis. Clinical Infect Dis: Off Publ Infect Dis Soc Am. 2006;43:1468–75.
Gillespie SH. The role of moxifloxacin in tuberculosis therapy. Eur Respir Rev. 2016;25:19–28.
de Jager VR, Dawson R, van Niekerk C, Hutchings J, Kim J, Vanker N, van der Merwe L, Choi J, Nam K, Diacon AH. Telacebec (Q203), a New Antituberculosis Agent. New Engl J Med. 2020;382:1280–1.
Kim S, Scanga CA, Miranda Silva C, Zimmerman M, Causgrove C, Stein B, Dartois V, Peloquin CA, Graham E, Louie A, Flynn JL, Schmidt S, Drusano GL. Pharmacokinetics of tedizolid, sutezolid, and sutezolid-M1 in non-human primates. Eur J Pharm Sci. 2020;151:105421.
Meyer FM, Repnik U, Karnaukhova E, Schubert K, Bramkamp M. Effects of benzothiazinone and ethambutol on the integrity of the corynebacterial cell envelope. Cell Surf. 2023;10:100116.
Jeong JW, Jung SJ, Lee HH, Kim YZ, Park TK, Cho YL, Chae SE, Baek SY, Woo SH, Lee HS, Kwak JH. In vitro and in vivo activities of LCB01-0371, a new oxazolidinone. Antimicrob Agents Chemother. 2010;54:5359–62.
Diacon AH, Barry CE 3rd, Carlton A, Chen RY, Davies M, de Jager V, Fletcher K, Koh G, Kontsevaya I, Heyckendorf J, Lange C, Reimann M, Penman SL, Scott R, Maher-Edwards G, Tiberi S, Vlasakakis G, Upton CM, Aguirre DB. A first-in-class leucyl-tRNA synthetase inhibitor, ganfeborole, for rifampicin-susceptible tuberculosis: a phase 2a open-label, randomized trial. Nat Med. 2024;30:896–904.
Talley AK, Thurston A, Moore G, Gupta VK, Satterfield M, Manyak E, Stokes S, Dane A, Melnick D. First-in-Human Evaluation of the Safety, Tolerability, and Pharmacokinetics of SPR720, a Novel Oral Bacterial DNA Gyrase (GyrB) Inhibitor for Mycobacterial Infections. Antimicrob Agents Chemother. 2021;65:e0120821.
Yao R, Wang B, Fu L, Li L, You K, Li YG, Lu Y. Sudapyridine (WX-081), a Novel Compound against Mycobacterium tuberculosis. Microbiol Spectr. 2022;10:e0247721.
Roubert C, Fontaine E, Upton AM. Upcycling” known molecules and targets for drug-resistant TB. Front Cell Infect Microbiol. 2022;12:1029044.
Manjunatha U, Boshoff HI, Barry CE. The mechanism of action of PA-824: Novel insights from transcriptional profiling. Commun Integr Biol. 2009;2:215–8.
Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, Demoitie MA, Diacon A, Evans TG, Gillard P, Hellstrom E, Innes JC, Lempicki M, Malahleha M, Martinson N, Mesia Vela D, Muyoyeta M, Nduba V, Pascal TG, Tameris M, Thienemann F, Wilkinson RJ, Roman F. Final Analysis of a Trial of M72/AS01(E) Vaccine to Prevent Tuberculosis. New Engl J Med. 2019;381:2429–39.
Blossey AM, Brückner S, May M, Parzmair GP, Sharma H, Shaligram U, Grode L, Kaufmann SHE, Netea MG, Schindler C. VPM1002 as Prophylaxis Against Severe Respiratory Tract Infections Including Coronavirus Disease 2019 in the Elderly: A Phase 3 Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Study. Clinical Infect Dis: Off Publ Infect Dis Soc Am. 2023;76:1304–10.
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. Monatshefte für Chem - Chem Monthly. 2018;149:1199–245.
Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics. MedChemComm. 2019;10:1719–39.
Sharma V, Das R, Mehta DK, Sharma D, Aman S, Khan MU. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Molecular Diversity. 2025;29:711–37.
Ball P. Quinolone generations: natural history or natural selection?. Journal Antimicrobial Chemother. 2000;46:17–24.
Millanao AR, Mora AY, Villagra NA, Bucarey SA, Hidalgo AA Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. In.Molecules (Basel, Switzerland); 2021.
Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harb Perspect Med. 2015;5:a017863.
Organización Panamericana de la S, Organización Panamericana de la S. Manual operativo de la OMS sobre la tuberculosis. Módulo 1: Prevención. Tratamiento preventivo de la tuberculosis. In. Washington, D.C: OPS; 2022.
WHO Guidelines Approved by the Guidelines Review Committee. In. The Use of Delamanid in the Treatment of Multidrug-Resistant Tuberculosis: Interim Policy Guidance. Geneva: World Health Organization Copyright © World Health Organization 2014; 2014.
Sarathy J, Blanc L, Alvarez-Cabrera N, O’Brien P, Dias-Freedman I, Mina M, Zimmerman M, Kaya F, Ho Liang HP, Prideaux B, Dietzold J, Salgame P, Savic RM, Linderman J, Kirschner D, Pienaar E, Dartois V. Fluoroquinolone Efficacy against Tuberculosis Is Driven by Penetration into Lesions and Activity against Resident Bacterial Populations. Antimicrob Agents Chemother. 2019;63:e02516-18.
Alós J-I. Quinolonas. Enfermedades Infecciosas y Microbiología Clínica. 2009;27:290–7.
Sepcić K, Perković O, Turel I, Sepcić J. [Adverse effects and interactions of fluoroquinolones]. Lijecnicki Vjesn. 2009;131:74–80.
Chien J-Y, Chiu W-Y, Chien S-T, Chiang C-J, Yu C-J, Hsueh P-R. Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant Mycobacterium tuberculosis Isolates. Antimicrobial Agents Chemother. 2016;60:2090–6.
Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 2014;22:438–45.
Viñuelas-Bayón J, Vitoria MA, Samper S. Diagnóstico rápido de la tuberculosis. Detección de mecanismos de resistencia. Enfermedades Infecciosas y Microbiología Clínica. 2017;35:520–8.
Carta A, Bua A, Corona P, Piras S, Briguglio I, Molicotti P, Zanetti S, Laurini E, Aulic S, Fermeglia M, Pricl S. Design, synthesis and antitubercular activity of 4-alkoxy-triazoloquinolones able to inhibit the M. tuberculosis DNA gyrase. European J Medicinal Chem. 2019;161:399–415.
Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Legoabe LJ, Khanye SD. Quinolone-isoniazid hybrids: synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation. Medchemcomm. 2019;10:326–31.
Beteck RM, Seldon R, Jordaan A, Warner DF, Hoppe HC, Laming D, Khanye SD. New Quinolone-Based Thiosemicarbazones Showing Activity Against Plasmodium falciparum and Mycobacterium tuberculosis. Molecules (Basel, Switzerland); 2019.4;24:1740.
Beteck RM, Jordaan A, Swart T, Van Der Kooy F, Warner DF, Hoppe HC, Legoabe LJ. 6-Nitro-1-benzylquinolones exhibiting specific antitubercular activity. Chem Biol Drug Des. 2020;96:1387–94.
Coulibaly S, Cimino M, Ouattara M, Lecoutey C, Buchieri MV, Alonso-Rodriguez N, Briffotaux J, Mornico D, Gicquel B, Rochais C, Dallemagne P. Phenanthrolinic analogs of quinolones show antibacterial activity against M. tuberculosis. European J Medicinal Chem. 2020;207:112821.
Alsayed SSR, Lun S, Luna G, Beh CC, Payne AD, Foster N, Bishai WR, Gunosewoyo H. Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Adv. 2020;10:7523–40.
Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules (Basel, Switzerland); 2022.12;27:8807.
Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Beteck RM. Quinolone analogues of benzothiazinone: Synthesis, antitubercular structure-activity relationship and ADME profiling. European J Medicinal Chem. 2023;258:115539.
Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. Advances Exp Med Biol. 2020;1282:37–69.
Marvadi SK, Krishna VS, Surineni G, Srilakshmi Reshma R, Sridhar B, Sriram D, Kantevari S. Synthesis, in vitro, and in vivo (Zebra fish) antitubercular activity of 7,8-dihydroquinolin-5(6H)-ylidenehydrazinecarbothioamides. Bioorganic Chem. 2020;96:103626.
Alegaon S, Kashniyal K, Kuncolienkar S, Kavalapure R, Salve P, Palled M, Suryawanshi S, Jalalpure S. Synthesis and biological evaluation of some 4-aminoquinoline derivatives as potential antitubercular agents. Future J Pharm Sci. 2020;6:2.
T G S, Subramanian S, Eswaran S. Design, Synthesis and Study of Antibacterial and Antitubercular Activity of Quinoline Hydrazone Hybrids. 2020;26:137-47.
Picconi P, Jeeves R, Moon CW, Jamshidi S, Nahar KS, Laws M, Bacon J, Rahman KM. Noncytotoxic Pyrrolobenzodiazepine-Ciprofloxacin Conjugate with Activity against Mycobacterium tuberculosis. ACS omega. 2019;4:20873–81.
Chen R, Zhang H, Ma T, Xue H, Miao Z, Chen L, Shi X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorganic medicinal Chem Lett. 2019;29:2635–7.
Cilliers P, Seldon R, Smit FJ, Aucamp J, Jordaan A, Warner DF, N’Da DD. Design, synthesis, and antimycobacterial activity of novel ciprofloxacin derivatives. Chemical Biol Drug Des. 2019;94:1518–36.
Liu J, Ren Z, Fan L, Wei J, Tang X, Xu X, Yang D. Design, synthesis, biological evaluation, structure-activity relationship, and toxicity of clinafloxacin-azole conjugates as novel antitubercular agents. Bioorganic Medicinal Chem. 2019;27:175–87.
Jiang Y, Qian A, Li Y. 1H-1,2,3-Triazole tethered isatin-moxifloxacin: Design, synthesis and in vitro anti-mycobacterial evaluation. Archiv der Pharmazie. 2019;352:1900040.
Türe A, Kulabaş N, Dingiş Sİ, Birgül K, Bozdeveci A, Alpay Karaoğlu Ş, Krishna VS, Sriram D, Küçükgüzel İ. Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorganic Chem. 2019;88:102965.
Gao F, Chen Z, Ma L, Fan Y, Chen L, Lu G. Synthesis and biological evaluation of moxifloxacin-acetyl-1,2,3-1H-triazole-methylene-isatin hybrids as potential anti-tubercular agents against both drug-susceptible and drug-resistant Mycobacterium tuberculosis strains. European J Medicinal Chem. 2019;180:648–55.
Ding Z, Hou P, Liu B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Archiv der Pharmazie. 2019;352:1900135.
Ouchi Y, Mukai T, Koide K, Yamaguchi T, Park J-H, Kim H, Yokoyama K, Tamaru A, Gordon SV, Nakajima C, Suzuki Y. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resistant Mycobacterium tuberculosis. Tuberculosis. 2020;120:101891.
Niveditha N, Begum M, Prathibha D, Sirisha K, Mahender P, Chitra C, Rao VR, Reddy VM, Achaiah G. Design, Synthesis and Pharmacological Evaluation of Some C3 Heterocyclic-Substituted Ciprofloxacin Derivatives as Chimeric Antitubercular Agents. Chemical Pharm Bull. 2020;68:1170–7.
Qiao M, Ren W, Guo H, Huo F, Shang Y, Wang Y, Gao M, Pang Y. Comparative in vitro susceptibility of a novel fluoroquinolone antibiotic candidate WFQ-228, levofloxacin, and moxifloxacin against Mycobacterium tuberculosis. International J Infect Dis: IJID : Off Publ Int Soc Infect Dis. 2021;106:295–9.
Aziz HA, Moustafa GAI, Abuo-Rahma GE-DA, Rabea SM, Hauk G, Krishna VS, Sriram D, Berger JM, Abbas SH. Synthesis and antimicrobial evaluation of new nitric oxide-donating fluoroquinolone/oxime hybrids. Archiv der Pharmazie. 2021;354:2000180.
Chrzanowska A, Struga M, Roszkowski P, Koliński M, Kmiecik S, Jałbrzykowska K, Zabost A, Stefańska J, Augustynowicz-Kopeć E, Wrzosek M, Bielenica A. The Effect of Conjugation of Ciprofloxacin and Moxifloxacin with Fatty Acids on Their Antibacterial and Anticancer Activity. Int J Mol Sci. 2022;23:6261.
Pais JP, Policarpo M, Pires D, Francisco AP, Madureira AM, Testa B, Anes E, Constantino L. Fluoroquinolone Derivatives in the Treatment of Mycobacterium tuberculosis Infection. Pharmaceuticals; 2022;15:1213.
Carta A, Palomba M, Paglietti G, Molicotti P, Paglietti B, Cannas S, Zanetti S. [1,2,3]Triazolo[4,5-h]quinolones. A new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorganic medicinal Chem Lett. 2007;17:4791–4.
Acknowledgements
AMGM had a scholarship by SECIHTI (CVU:1325935).
Funding
The authors declare that no financial support was received for the research, authorship, and/or publication of this paper.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gutiérrez-Mauricio, A.M., Trujillo-Paez, J.V., Trejo-Martinez, L.A. et al. Tuberculosis drug development; fluoroquinolone structural tailoring. J Antibiot 78, 517–534 (2025). https://doi.org/10.1038/s41429-025-00839-2
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41429-025-00839-2


