Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Feature: Article
  • Published:

Expression of a strain-specific non-ribosomal peptide synthetase from Aspergillus lentulus lead to the discovery of a new fungal alkaloid lentoquinazoline

Abstract

Fungi have a potential to produce a variety of natural products for their survival by utilizing dozens of biosynthetic gene clusters (BGCs). Fungal BGCs are typically conserved in species but recent studies showed that many BGCs are maintained in limited number of strains. However, little is reported for the products of strain specific BGCs. In this study, we analyzed publicly available genomic data of human pathogenic fungus Aspergillus lentulus and identified seven strain-specific BGCs in addition to (−)- and (+)-auranthine BGCs. One of these BGCs, leq cluster, was found in nine of thirteen A. lentulus strains and a new compound named lentoquinazoline (1) appeared in the metabolites when non-ribosomal peptide synthetase (NRPS) gene leqA was heterologously expressed in Aspergillus nidulans. The structure of 1 was determined by the combination of 2D NMR analysis and advanced Marfey’s method to be composed of anthranilic acid, L-leucine and L-asparagine. Whereas 6-6-6 tricyclic quinazoline-synthesizing NRPSs typically contain an epimerase domain and incorporate one molecule of d-amino acid to the product, LeqA was found to introduce only l-amino acids due to the mutations in the active site of the epimerase domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, et al. Discovery of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol. 2017;15:e2003583.

  2. Drott MT, Rush TA, Satterlee TR, Giannone RJ, Abraham PE, Greco C, et al. Microevolution in the pansecondary metabolome of Aspergillus flavus and its potential macroevolutionary implications for filamentous fungi. Proc Natl Acad Sci USA. 2021;118:e2021683118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Drott MT, Bastos RW, Rokas A, Ries LNA, Gabaldon T, Goldman GH, et al. Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. mSphere. 2020;5:e00156–20.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kishimoto S, Tamura T, Okamoto T, Watanabe K. Enantioselective Biosynthesis of (+)- and (-)-Auranthines. J Am Chem Soc. 2025;147:10612–7.

    Article  CAS  PubMed  Google Scholar 

  5. Kishimoto S, Matsubara Y, Watanabe K. Alkaloid biosynthetic enzyme generates diastereomeric pair via two distinct mechanisms. J Am Chem Soc. 2022;144:5485–93.

    Article  CAS  PubMed  Google Scholar 

  6. Forseth RR, Fox EM, Chung D, Howlett BJ, Keller NP, Schroeder FC. Identification of cryptic products of the gliotoxin gene cluster using NMR-based comparative metabolomics and a model for gliotoxin biosynthesis. J Am Chem Soc. 2011;133:9678–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh T, Tokunaga K, Matsuda Y, Fujii I, Abe I, Ebizuka Y, et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat Chem. 2010;2:858–64.

    Article  CAS  PubMed  Google Scholar 

  8. Kishimoto S, Minami A, Aoki Y, Matsubara Y, Watanabe S, Watanabe K. Reactive azlactone intermediate drives fungal secondary metabolite cross-pathway generation. J Am Chem Soc. 2023;145:3221–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zaehle C, Gressler M, Shelest E, Geib E, Hertweck C, Brock M. Terrein biosynthesis in Aspergillus terreus and its impact on phytotoxicity. Chem Biol. 2014;21:719–31.

    Article  CAS  PubMed  Google Scholar 

  10. Kalb D, Heinekamp T, Lackner G, Scharf DH, Dahse HM, Brakhage AA, et al. Genetic engineering activates biosynthesis of aromatic fumaric acid amides in the human pathogen Aspergillus fumigatus. Appl Environ Microbiol. 2015;81:1594–600.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yin WB, Baccile JA, Bok JW, Chen Y, Keller NP, Schroeder FC. A nonribosomal peptide synthetase-derived iron(III) complex from the pathogenic fungus Aspergillus fumigatus. J Am Chem Soc. 2013;135:2064–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hai Y, Jenner M, Tang Y. Fungal siderophore biosynthesis catalysed by an iterative nonribosomal peptide synthetase. Chem Sci. 2020;11:11525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ishiuchi K, Nakazawa T, Yagishita F, Mino T, Noguchi H, Hotta K, et al. Combinatorial generation of complexity by redox enzymes in the chaetoglobosin A biosynthesis. J Am Chem Soc. 2013;135:7371–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC, et al. Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol. 2013;2:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang P-K, Cary JW, Lebar MD. Biosynthesis of conidial and sclerotial pigments in Aspergillus species. Appl Microbiol Biotechnol. 2020;104:2277–86.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou L, Abe I, Awakawa T. Biosynthesis of D/L-lactate from methylglyoxal. Tetrahedron. 2022;127:133087.

    Article  CAS  Google Scholar 

  17. Throckmorton K, Lim FY, Kontoyiannis DP, Zheng W, Keller NP. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ Microbiol. 2016;18:246–59.

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda Y, Gotfredsen CH, Larsen TO. Genetic characterization of neosartorin biosynthesis provides insight into heterodimeric natural product generation. Org Lett. 2018;20:7197–200.

    Article  CAS  PubMed  Google Scholar 

  19. Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J, Rokas A, et al. Fungal isocyanide synthases and xanthocillin biosynthesis in Aspergillus fumigatus. mBio. 2018;9:e00785–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bissell AU, Rautschek J, Hoefgen S, Raguz L, Mattern DJ, Saeed N, et al. Biosynthesis of the sphingolipid inhibitors sphingofungins in filamentous fungi requires aminomalonate as a metabolic precursor. ACS Chem Biol. 2022;17:386–94.

    Article  CAS  PubMed  Google Scholar 

  21. Baccile JA, Spraker JE, Le HH, Brandenburger E, Gomez C, Bok JW, et al. Plant-like biosynthesis of isoquinoline alkaloids in Aspergillus fumigatus. Nat Chem Biol. 2016;12:419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, et al. Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chembiochem. 2011;12:1376–82.

    Article  CAS  PubMed  Google Scholar 

  23. Jenner M, Hai Y, Nguyen HH, Passmore M, Skyrud W, Kim J, et al. Elucidating the molecular programming of a nonlinear non-ribosomal peptide synthetase responsible for fungal siderophore biosynthesis. Nat Commun. 2023;14:2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang ZX, Li ZH, Yin WB, Li SM. Biosynthesis of viridicatol in penicillium palitans implies a cytochrome P450-mediated meta hydroxylation at a monoalkylated benzene ring. Org Lett. 2022;24:262–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ali H, Ries MI, Lankhorst PP, van der Hoeven RA, Schouten OL, Noga M, et al. A non-canonical NRPS is involved in the synthesis of fungisporin and related hydrophobic cyclic tetrapeptides in Penicillium chrysogenum. PLoS One. 2014;9:e98212.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao X, Haynes SW, Ames BD, Wang P, Vien LP, Walsh CT, et al. Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nat Chem Biol. 2012;8:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem. 1997;62:7512–5.

    Article  CAS  PubMed  Google Scholar 

  28. Fujii K, Ikai Y, Oka H, Suzuki M, Harada K-i. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey's method with mass spectrometry and its practical application. Anal Chem. 1997;69:5146–51.

    Article  CAS  Google Scholar 

  29. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin HC, Tsunematsu Y, Dhingra S, Xu W, Fukutomi M, Chooi YH, et al. Generation of complexity in fungal terpene biosynthesis: discovery of a multifunctional cytochrome P450 in the fumagillin pathway. J Am Chem Soc. 2014;136:4426–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yee DA, Kakule TB, Cheng W, Chen M, Chong CTY, Hai Y, et al. Genome mining of alkaloidal terpenoids from a hybrid terpene and nonribosomal peptide biosynthetic pathway. J Am Chem Soc. 2020;142:710–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ames BD, Liu X, Walsh CT. Enzymatic processing of fumiquinazoline F: a tandem oxidative-acylation strategy for the generation of multicyclic scaffolds in fungal indole alkaloid biosynthesis. Biochemistry. 2010;49:8564–6.

    Article  CAS  PubMed  Google Scholar 

  35. Haynes SW, Gao X, Tang Y, Walsh CT. Assembly of asperlicin peptidyl alkaloids from anthranilate and tryptophan: a two-enzyme pathway generates heptacyclic scaffold complexity in asperlicin E. J Am Chem Soc. 2012;134:17444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan D, Chen Q, Gao J, Bai J, Liu B, Zhang Y, et al. Complexity and diversity generation in the biosynthesis of fumiquinazoline-related peptidyl alkaloids. Org Lett. 2019;21:1475–9.

    Article  CAS  PubMed  Google Scholar 

  37. Stachelhaus T, Walsh CT. Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry. 2000;39:5775–87.

    Article  CAS  PubMed  Google Scholar 

  38. Zheng L, Wang H, Fan A, Li SM. Oxepinamide F biosynthesis involves enzymatic D-aminoacyl epimerization, 3H-oxepin formation, and hydroxylation induced double bond migration. Nat Commun. 2020;11:4914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng L, Wang H, Ludwig-Radtke L, Li SM. Oxepin formation in fungi implies specific and stereoselective ring expansion. Org Lett. 2021;23:2024–8.

    Article  CAS  PubMed  Google Scholar 

  40. Shao C-L, Xu R-F, Wei M-Y, She Z-G, Wang C-Y. Structure and absolute configuration of fumiquinazoline L, an alkaloid from a gorgonian-derived Scopulariopsis sp. fungus. J Nat Prod. 2013;76:779–82.

    Article  CAS  PubMed  Google Scholar 

  41. Xin ZH, Fang Y, Du L, Zhu T, Duan L, Chen J, et al. Aurantiomides A-C, quinazoline alkaloids from the sponge-derived fungus Penicillium aurantiogriseum SP0-19. J Nat Prod. 2007;70:853–5.

    Article  CAS  PubMed  Google Scholar 

  42. Ge HM, Peng H, Guo ZK, Cui JT, Song YC, Tan RX. Bioactive alkaloids from the plant endophytic fungus Aspergillus terreus. Planta Med. 2010;76:822–4.

    Article  CAS  PubMed  Google Scholar 

  43. Shang X-F, Morris-Natschke SL, Liu Y-Q, Guo X, Xu X-S, Goto M, et al. Biologically active quinoline and quinazoline alkaloids part I. Med Res Rev. 2018;38:775–828.

    Article  CAS  PubMed  Google Scholar 

  44. Belofsky GN, Anguera M, Jensen PR, Fenical W, Köck M. Oxepinamides A-C and fumiquinazolines H-I: bioactive metabolites from a marine isolate of a fungus of the genus Acremonium. Chem Eur J. 2000;6:1355–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Japan Society for the Promotion of Science (JSPS) (KW, 22H05119, 22H05121, 22H00362, 22H04979, 22K19158; SK, 24K08731), the Uehara Memorial Foundation (KW) and SECOM Science and Japan Agency for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinji Kishimoto or Kenji Watanabe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, S., Masuyama, Y. & Watanabe, K. Expression of a strain-specific non-ribosomal peptide synthetase from Aspergillus lentulus lead to the discovery of a new fungal alkaloid lentoquinazoline. J Antibiot (2026). https://doi.org/10.1038/s41429-025-00887-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41429-025-00887-8

Search

Quick links