Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Marinapyrones A and B, new antioxidative α-pyrones produced by soybean rhizosphere-derived actinomycete strain W21-0103

Abstract

Two new α-pyrone compounds designated marinapyrones A (1) and B (2) were isolated along with the known related compound micropyrone B (3) from the culture broth of rhizosphere-derived actinomycete strain W21-0103. The structures of 1 and 2 were elucidated by spectroscopic data analyses, including 1D and 2D NMR. Compounds 1-3 exhibited weak antioxidant activity in a radical scavenging assay.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

References

  1. Lewis K. The science of antibiotic discovery. Cell. 2020;181:29–45.

    Article  CAS  PubMed  Google Scholar 

  2. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, Doig A, Guilliams T, Latimer J, McNamee C, Norris A, Sanseau P, Cavalla D, Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  3. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shigeno S, Kadowaki M, Nagai K, Hosoda K, Terahara T, Nishimura T, Hasegawa N, Tomoda H, Ohshiro T. New polycyclic tetramate macrolactams with antimycobacterial activity produced by marine-derived Streptomyces sp. KKMA-0239. J Antibiot. 2024;77:265–71.

    Article  CAS  Google Scholar 

  5. Shigeno S, Watanabe K, Nagai K, Terahara T, Imada C, Tomoda H, Ohshiro T. A new Furan-type secondary metabolite produced by the echinomycin-producing marine actinomycete Streptomyces sp. KM14-19. Chem Pharm Bull. 2025;73:974–6.

    Article  Google Scholar 

  6. Kobayashi K, Tejima R, Nagai K, Seki R, Hosoya T, Une Y, Shigeno S, Tomoda H, Ohshiro T. Paranazzamides A and B, new cyclic dipeptides containing a C7-prenylated tryptophan, produced by pathogenic reptile fungi Paranannizziopsis sp. UH-21. J Antibiot. 2024;77:403–11.

    Article  CAS  Google Scholar 

  7. Nur EAA, Kobayashi K, Tejima R, Katada Y, Tomoda H, Ohshiro T. Drimane sesquiterpene esters produced by Aspergillus insuetus BF-1613 as inhibitors of sterol O-acyltransferase. J Antibiot. 2024;77:837–41.

    Article  CAS  Google Scholar 

  8. Seki R, Nagai K, Kobayashi K, Shigeno S, Shirahata T, Kobayashi Y, Ohshiro T, Tomoda H. Celludinone C, a new dihydroisobenzofuran isolated from Talaromyces cellulolyticus BF-0307. J Antibiot. 2025;78:26–34.

    Article  CAS  Google Scholar 

  9. Ling N, Wang T, Kuzyakov Y. Rhizosphere bacteriome structure and functions. Nat Commun. 2022;13:836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tedsree N, Nakashima T, Tanasupawat S. Diversity of actinobacteria in the rhizosphere and their biotechnological applications. In: The Rhizosphere: Structure, Ecology and Significance: Nova Science Publishers, 2023. p. 177–207.

  11. Matsumoto A, Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot. 2017;70:514–9.

    Article  CAS  Google Scholar 

  12. Sugiyama A. The soybean rhizosphere: metabolites, microbes, and beyond-A review. J Adv Res. 2019;19:67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang B, Cheng K, Zhang L, Huang Y, Liu C. Marinactinospora rubrisoli sp. nov., isolated from red soil. Arch Microbiol. 2019;201:459–65.

    Article  CAS  PubMed  Google Scholar 

  14. Xu YT, Luo YC, Xue JH, Li YP, Dong L, Li WJ, Zhou ZY, Wei XY. Micropyrones A and B, two new α-pyrones from the actinomycete Microbacterium sp. GJ312 isolated from Glycyrrhiza uralensis Fisch. Nat Prod Res. 2023;37:462–7.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Jiang Y, Cao Y, Liu J, Zheng D, Chen X, Han L, Jiang C, Huang X. Violapyrones A-G, α-pyrone derivatives from Streptomyces violascens isolated from Hylobates hoolock feces. J Nat Prod. 2013;76:2126–30.

    Article  CAS  PubMed  Google Scholar 

  16. Lindel T, Jensen PR, Fenical W. Lagunapyrones A-C: cytotoxic acetogenins of a new skeletal class from a marine sediment bacterium. Tetrahedron Lett. 1996;37:1327–30.

    Article  CAS  Google Scholar 

  17. Zhou L, Chang Y, Yang S, Huang X, Wang J, Jiang C, Zhu T, Li D, Che Q. Antibacterial p-terphenyl and α‑pyrone derivates isolated from the marine-derived actinomycete Nocardiopsis sp. HDN154086. J Antibiot. 2024;77:201–5.

    Article  CAS  Google Scholar 

  18. Kim Y, Ogura H, Akasaka K, Oikawa T, Matsuura N, Imada C, Yasuda H, Igarashi Y. Nocapyrones: α- and γ-pyrones from a marine-derived Nocardiopsis sp. Mar Drugs. 2014;12:4110–25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fu P, Liu P, Qu H, Wang Y, Chen D, Wang H, Li J, Zhu W. Α-pyrones and diketopiperazine derivatives from the marine-derived actinomycete Nocardiopsis dassonvillei HR10-5. J Nat Prod. 2011;74:2219–23.

    Article  CAS  PubMed  Google Scholar 

  20. Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod. 2008;71:570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev. 2017;41:392–416.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our thanks to Dr. Kenichiro Nagai, Ms. Reiko Seki, and Ms. Noriko Sato at the School of Pharmacy, Kitasato University for instrumental measurements and Ms. Fuka Arai, Ms. Yuna Kido, Ms. Sarasa Sakagami, and Ms. Misaki Sato at the School of Pharmacy, Kitasato University for assisting with our experiments. This work was supported by a Kitasato University Research Grant for Young Researchers (to SS). This work was partially supported by Cabinet Office, Government of Japan, Moonshot R&D Program for Agriculture, Forestry and Fisheries (JPJ009237, funding agency: Biooriented Technology Research Advancement Institution) (to H Takeyama).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Ohshiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41429_2026_898_MOESM1_ESM.docx

SI_Marinapyrones A and B, new antioxidative XX-pyrones produced by soybean rhizosphere-derived actinomycete strain W21-0103

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigeno, S., Onishi, Y., Nishikawa, Y. et al. Marinapyrones A and B, new antioxidative α-pyrones produced by soybean rhizosphere-derived actinomycete strain W21-0103. J Antibiot (2026). https://doi.org/10.1038/s41429-026-00898-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41429-026-00898-z

Search

Quick links