Abstract
This observational study aimed to investigate whether the reported association between family history (FH) of breast cancer (BC) or ovarian cancer (OC) and OC risks in BRCA1/2 mutation carriers can be explained by mutation position on the gene. In total, 3310 female BRCA1/2 mutation carriers participating in a nationwide prospective cohort (Hereditary Breast and Ovarian Cancer in the Netherlands) were included. FH was classified according to cancer occurrence in first-degree relatives (BC only, OC only, both, neither) and mutations were classified according to their position on the gene (OC cluster region (OCCR), BC cluster region, neither). The main outcome was OC occurrence. Cox proportional-hazard models were applied to investigate the association between FH and OC risks before and after adjusting for mutation position. Of all women included, 202 were diagnosed with OC. A BC-only FH tended to be associated with lower OC risks when compared with a FH without BC/OC (HR: 0.79, 95% CI: 0.52–1.17; HR: 0.59, 95% CI: 0.33–1.07 for BRCA1 and BRCA2, respectively) while an OC-only FH tended to be associated with higher risks (HR: 1.58, 95% CI: 0.90–2.77; HR: 1.75, 95% CI: 0.70–4.37 for BRCA1 and BRCA2, respectively). After adjusting for mutation position, association between FH and OC risks was slightly smaller in magnitude (HR: 0.85, 95% CI: 0.55–1.30; HR: 0.64, 95% CI: 0.34–1.21 for BC-only FH in BRCA1 and BRCA2, respectively; HR: 1.46, 95% CI: 0.80–2.68; HR: 1.49, 95% CI: 0.44–4.02 for OC-only FH in BRCA1 and BRCA2, respectively), indicating that mutation position explains only part of the association. Considering the magnitude of the observed trend, we do not believe FH should be used to change counseling regarding OC prevention.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.
Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108:18032–7.
Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol. 2007;25:1329–33.
Mavaddat N, Peock S, Frost D, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013;105:812–22.
Brohet RM, Velthuizen ME, Hogervorst FB, et al. Breast and ovarian cancer risks in a large series of clinically ascertained families with a high proportion of BRCA1 and BRCA2 Dutch founder mutations. J Med Genet. 2014;51:98–107.
Vos JR, Hsu L, Brohet RM, et al. Bias correction methods explain much of the variation seen in breast cancer risks of BRCA1/2 mutation carriers. J Clin Oncol. 2015;33:2553–62.
Milne RL, Antoniou AC. Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer. 2016;23:T69–84.
Soegaard M, Frederiksen K, Jensen A, et al. Risk of ovarian cancer in women with first-degree relatives with cancer. Acta Obstet Gynecol Scand. 2009;88:449–56.
Hemminki K, Granstrom C. Familial invasive and borderline ovarian tumors by proband status, age and histology. Int J Cancer. 2003;105:701–5.
Lee JS, John EM, McGuire V, et al. Breast and ovarian cancer in relatives of cancer patients, with and without BRCA mutations. Cancer Epidemiol Biomark Prev. 2006;15:359–63.
Stratton JF, Pharoah P, Smith SK, Easton D, Ponder BA. A systematic review and meta-analysis of family history and risk of ovarian cancer. Br J Obstet Gynaecol. 1998;105:493–9.
Metcalfe K, Lubinski J, Lynch HT, et al. Family history of cancer and cancer risks in women with BRCA1 or BRCA2 mutations. J Natl Cancer Inst. 2010;102:1874–8.
Gayther SA, Warren W, Mazoyer S, et al. Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nat Genet. 1995;11:428–33.
Gayther SA, Mangion J, Russell P, et al. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nat Genet. 1997;15:103–5.
Thompson D, Easton D, Breast Cancer Linkage Consortium. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68:410–9.
Thompson D, Easton D, Breast Cancer Linkage Consortium. Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomark Prev. 2002;11:329–36.
Rebbeck TR, Mitra N, Wan F, et al. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015;313:1347–61.
Teixeira N, Mourits MJ, Vos JR, et al. Ovarian cancer in BRCA1/2 mutation carriers: the impact of mutation position and family history on the cancer risk. Maturitas. 2015;82:197–202.
National Comprehensive Cancer Network (NCCN): NCCN clinical practice in oncology (NCCN guidelines). Genetic/familial high-risk assessment: breast and ovarian. Version 2.2017. 2016; 2017.
Faubion SS, Kuhle CL, Shuster LT, Rocca WA. Long-term health consequences of premature or early menopause and considerations for management. Climacteric. 2015;18:483–91.
Pijpe A, Manders P, Brohet RM, et al. Physical activity and the risk of breast cancer in BRCA1/2 mutation carriers. Breast Cancer Res Treat. 2010;120:235–44.
Casparie M1, Tiebosch AT, Burger G, et al. Pathology databanking and biobanking in The Netherlands, a central role for PALGA, the nationwide histopathology and cytopathology data network and archive. Cell Oncol. 2007;29(1):19-24
RStudio: Integrated development environment for R (Version 0.98.1091) [Computer software]. Boston, MA. Retrieved December 2014.
Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.
Tehranifar P, Wu HC, Shriver T, Cloud AJ, Terry MB. Validation of family cancer history data in high-risk families: the influence of cancer site, ethnicity, kinship degree, and multiple family reporters. Am J Epidemiol. 2015;181:204–12.
Friebel TM, Domchek SM, Rebbeck TR. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:dju091.
Kuchenbaecker KB, Ramus SJ, Tyrer J, et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat Genet. 2015;47:164–71.
Couch FJ, Wang X, McGuffog L, et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet. 2013;9:e1003212.
Kuchenbaecker KB, McGuffog L, Barrowdale D et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst. 2017; 109: https://doi.org/10.1093/jnci/djw302.
Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101:80–87.
Antoniou AC, Pharoah PP, Smith P, Easton DF. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer. 2004;91:1580–90.
Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62:145–58.
Author contributions
Study concept: all authors. Study design: GHdB, MJEM, JRV, and JCO. Data collection: HEBON. Data analysis and interpretation: NT, GHdB, MJEM, JCO, and AvdH. Manuscript preparation: NT, GHdB, MJEM, and JCO. Manuscript review: all authors.
Author information
Authors and Affiliations
Consortia
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Teixeira, N., van der Hout, A., Oosterwijk, J.C. et al. The association between cancer family history and ovarian cancer risk in BRCA1/2 mutation carriers: can it be explained by the mutation position?. Eur J Hum Genet 26, 848–857 (2018). https://doi.org/10.1038/s41431-018-0111-9
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41431-018-0111-9


