Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia

Abstract

We propose an approach for the identification of mutant genes for rare diseases in single cases of unknown etiology. All genes with rare biologically significant variants sorted from individual exome data are tested further for profiling of their spatial-temporal and cell/tissue specific expression compared to that of their paralogs. We developed a simple bioinformatics tool (“Essential Paralogue by Expression” (EPbE)) for such analysis. Here, we present rare clinical forms of early ataxia with cerebellar hypoplasia. Using whole-exome sequencing and the EPbE tool, we identified two novel mutant genes previously not associated with congenital human diseases. In Family I, the unique missense mutation (p.Lys258Glu) was found in the LRCH2 gene inherited in an X-linked manner. p.Lys258Glu occurs in the evolutionarily invariant site of the leucine-rich repeat domain of LRCH2. In Family II and Family III, the identical genetic variant was found in the CSMD1 gene inherited as an autosomal-recessive trait. The variant leads to amino acid substitution p.Gly2979Ser in a highly conserved region of the complement-interacting domain of CSMD1. The LRCH2 gene for Family I patients (in which congenital cerebellar hypoplasia was associated with demyelinating polyneuropathy) is expressed in Schwann and precursor Schwann cells and predominantly over its paralogous genes in the developing cerebellar cortex. The CSMD1 gene is predominantly expressed over its paralogous genes in the cerebellum, specifically in the period of late childhood. Thus, the comparative spatial-temporal expression of the selected genes corresponds to the neurological manifestations of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genetic analysis of patients with cerebellar ataxia from Family I.
Fig. 2: Genetic analysis of patients with cerebellar ataxia from Families II and III.
Fig. 3: Analysis of the impact of the p.Lys258Glu substitution on LRCH2 protein structure.
Fig. 4: Expression of candidate genes and their paralogs in the cerebellar cortex of the developing brain in the prenatal and postnatal periods.

Similar content being viewed by others

Data availability

https://evolgenomics.ru/epbe/

References

  1. Bertini E, des Portes V, Zanni G, Santorelli F, Dionisi-Vici C, Vicari S, et al. X-linked congenital ataxia: a clinical and genetic study. Am J Med Genet. 2000;92:53–56.

    Article  CAS  PubMed  Google Scholar 

  2. Illarioshkin SN, Tanaka H, Markova ED, Nikolskaya NN, Ivanova-Smolenskaya IA, Tsuji S. X-linked nonprogressive congenital cerebellar hypoplasia: clinical description and mapping to chromosome Xq. Ann Neurol. 1996;40:75–83.

    Article  CAS  PubMed  Google Scholar 

  3. Zanni G, Calì T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, et al. Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci USA. 2012;109:14514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Protasova MS, Grigorenko AP, Tyazhelova TV, Andreeva TV, Reshetov DA, Gusev FE, et al. Whole-genome sequencing identifies a novel ABCB7 gene mutation for X-linked congenital cerebellar ataxia in a large family of Mongolian ancestry. Eur J Hum Genet. 2016;24:550–5.

    Article  CAS  PubMed  Google Scholar 

  5. Tranebjaerg L, Teslovich TM, Jones M, Barmada MM, Fagerheim T, Dahl A, et al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11-q13. Hum Genet. 2003;113:293–5.

    Article  CAS  PubMed  Google Scholar 

  6. Guissart C, Li X, Leheup B, Drouot N, Montaut-Verient B, Raffo E, et al. Mutation of SLC9A1, encoding the major Na+/H+ exchanger, causes ataxia-deafness Lichtenstein-Knorr syndrome. Hum Mol Genet. 2015;24:463–70.

    Article  CAS  PubMed  Google Scholar 

  7. Duan R, Shi Y, Yu L, Zhang G, Li J, Lin Y, et al. UBA5 Mutations Cause a New Form of Autosomal Recessive Cerebellar Ataxia. PLoS One. 2016;11:e0149039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wei BQ, Mikkelsen TS, McKinney MK, Lander ES, Cravatt BF. A second fatty acid amide hydrolase with variable distribution among placental mammals. J Biol Chem. 2006;281:36569–78.

    Article  CAS  PubMed  Google Scholar 

  9. Martin HC, Gardner EJ, Samocha KE, Kaplanis J, Akawi N, Sifrim A, et al. The contribution of X-linked coding variation to severe developmental disorders. Nat Commun. 2021;12:627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176:4419–30.

    Article  CAS  PubMed  Google Scholar 

  11. Kraus DM, Pfenninger KH, Sanford SD, Holers VM. CSMD1 is expressed as a membrane protein on neuronal growth cones that colocalizes with F-actin and alpha-3 integrin. Mol Immunol. 2007;44:198.

    Article  Google Scholar 

  12. Escudero-Esparza A, Kalchishkova N, Kurbasic E, Jiang WG, Blom AM. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. FASEB J. 2013;27:5083–93.

    Article  CAS  PubMed  Google Scholar 

  13. Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what’s next? Mol Psychiatry. 2020;25:114–30.

    Article  CAS  PubMed  Google Scholar 

  14. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43:W174–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, 1000 Genomes Project Consortium. et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.

    Article  PubMed  CAS  Google Scholar 

  19. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. Author correction: the mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2021;590:E53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sim N-L, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40:W452–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lindsay SJ, Xu Y, Lisgo SN, Harkin LF, Copp AJ, Gerrelli D, et al. HDBR expression: a unique resource for global and individual gene expression studies during early human brain development. Front Neuroanat. 2016;10:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  25. Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional landscape of the prenatal human brain. Nature. 2014;508:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sirrs S, van Karnebeek CDM, Peng X, Shyr C, Tarailo-Graovac M, Mandal R, et al. Defects in fatty acid amide hydrolase 2 in a male with neurologic and psychiatric symptoms. Orphanet J Rare Dis. 2015;10:38.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gialeli C, Gungor B, Blom AM. Novel potential inhibitors of complement system and their roles in complement regulation and beyond. Mol Immunol. 2018;102:73–83.

    Article  CAS  PubMed  Google Scholar 

  28. Kajava AV. Structural diversity of leucine-rich repeat proteins. J Mol Biol. 1998;277:519–27.

    Article  CAS  PubMed  Google Scholar 

  29. Rivière T, Bader A, Pogoda K, Walzog B, Maier-Begandt D. Structure and emerging functions of LRCH proteins in leukocyte biology. Front Cell Dev Biol. 2020;8:584134.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol. 2001;11:725–32.

    Article  CAS  PubMed  Google Scholar 

  31. Ng ACY, Eisenberg JM, Heath RJW, Huett A, Robinson CM, Nau GJ, et al. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc Natl Acad Sci USA. 2011;108:4631–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz-Martínez J, Azcona LJ, Bergareche A, Martí-Massó JF, Paisán-Ruiz C. Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol Genet. 2017;3:e177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mizukami T, Kohno T, Hattori M. CUB and Sushi multiple domains 3 regulates dendrite development. Neurosci Res. 2016;110:11–17.

    Article  CAS  PubMed  Google Scholar 

  34. Altenhoff AM, Train C-M, Gilbert KJ, Mediratta I, Mendes de Farias T, Moi D, et al. OMA orthology in 2021: website overhaul, conserved isoforms, ancestral gene order and more. Nucleic Acids Res. 2021;49:D373–D379.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang X, Xu R, Zhu B, Yang X, Ding X, Duan S, et al. Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development. 2007;134:901–8.

    Article  CAS  PubMed  Google Scholar 

  36. Lauzier A, Bossanyi MF, Larcher R, Nassari S, Ugrankar R, Henne WM, et al. Snazarus and its human ortholog SNX25 modulate autophagic flux. J Cell Sci. 2022;135:jcs258733.

    Article  CAS  PubMed  Google Scholar 

  37. Baldwin HA, Wang C, Kanfer G, Shah HV, Velayos-Baeza A, Dulovic-Mahlow M, et al. VPS13D promotes peroxisome biogenesis. J Cell Biol. 2021;220:e202001188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Efimova N, Korobova F, Stankewich MC, Moberly AH, Stolz DB, Wang J, et al. III Spectrin Is necessary for formation of the constricted neck of dendritic spines and regulation of synaptic activity in neurons. J Neurosci. 2017;37:6442–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fujishima K, Kurisu J, Yamada M, Kengaku M. βIII spectrin controls the planarity of Purkinje cell dendrites by modulating perpendicular axon-dendrite interactions. Development. 2020;147:dev194530.

    Article  CAS  PubMed  Google Scholar 

  40. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–87.

    Article  CAS  PubMed  Google Scholar 

  41. Saghatelian A, Trauger SA, Want EJ, Hawkins EG, Siuzdak G, Cravatt BF. Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry. 2004;43:14332–9.

    Article  CAS  PubMed  Google Scholar 

  42. Müller PM, Rademacher J, Bagshaw RD, Wortmann C, Barth C, van Unen J, et al. Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions. Nat Cell Biol. 2020;22:498–511.

    Article  PubMed  CAS  Google Scholar 

  43. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2007;445:168–76.

    Article  CAS  PubMed  Google Scholar 

  44. Cox BJ, Vollmer M, Tamplin O, Lu M, Biechele S, Gertsenstein M, et al. Phenotypic annotation of the mouse X chromosome. Genome Res. 2010;20:1154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, et al. Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron. 2016;89:37–53.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell. 2018;174:1015–1030.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sapio MR, Goswami SC, Gross JR, Mannes AJ, Iadarola MJ. Transcriptomic analyses of genes and tissues in inherited sensory neuropathies. Exp Neurol. 2016;283:375–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim H-S, Lee J, Lee DY, Kim Y-D, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Rep. 2017;8:1714–26.

    Article  CAS  Google Scholar 

  50. Gutierrez MA, Dwyer BE, Franco SJ. Csmd2 is a synaptic transmembrane protein that interacts with PSD-95 and is required for neuronal maturation. eNeuro 2019; 6. https://doi.org/10.1523/ENEURO.0434-18.2019.

  51. Steen VM, Nepal C, Ersland KM, Holdhus R, Nævdal M, Ratvik SM, et al. Neuropsychological deficits in mice depleted of the schizophrenia susceptibility gene CSMD1. PLoS One. 2013;8:e79501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Shamseldin HE, AlAbdi L, Maddirevula S, et al. Lethal variants in humans: lessons learned from a large molecular autopsy cohort. Genome Med. 2021;13:161.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG, et al. Rare complete knockouts in humans: population distribution and significant role in autism spectrum disorders. Neuron. 2013;77:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The genetic analysis was supported by Russian Science Foundation grant No. 19-75-30039 (MSP). The software development was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 075-15-2020-801) (FEG).

Author information

Authors and Affiliations

Authors

Contributions

MSP was responsible for genetic analysis, interpreting results, writing manuscript. FEG was responsible for developed EPbE software, statistical analysis and expression analysis representation. TVA was responsible for review manuscript. SAK and SNI were responsible for clinical analysis and review manuscript. EIR was responsible for supervision genetic analysis and review manuscript.

Corresponding author

Correspondence to Evgeny I. Rogaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Written informed consent was obtained from all participants. The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Ethics Committee of the Research Center of Neurology, Moscow, RF (approval number 6-2/19 of 07/10/2019).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protasova, M.S., Gusev, F.E., Andreeva, T.V. et al. Novel genes bearing mutations in rare cases of early-onset ataxia with cerebellar hypoplasia. Eur J Hum Genet 30, 703–711 (2022). https://doi.org/10.1038/s41431-022-01088-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41431-022-01088-9

This article is cited by

Search

Quick links