Learning Objectives
Upon completion of this activity, participants will be able to:
-
1.
Describe long-term progression of iERMs in eyes with good baseline visual acuity, according to a retrospective case series
-
2.
Determine predictors of visual decline in iERMs in eyes with good baseline visual acuity, according to a retrospective case series
-
3.
Explain factors associated with earlier surgical intervention for iERMs in eyes with good baseline visual acuity, according to a retrospective case series
Continuing Medical Education
In support of improving patient care, this activity has been planned and implemented by Medscape, LLC and Springer Nature. Medscape, LLC is jointly accredited by the Accreditation Council for Continuing Medical Education (ACCME), the Accreditation Council for Pharmacy Education (ACPE), and the American Nurses Credentialing Center (ANCC), to provide continuing education for the healthcare team.
Medscape, LLC designates this Journal-based CME activity for a maximum of 1.00 AMA PRA Category 1 Credit(s). Physicians should claim only the credit commensurate with the extent of their participation in the activity.
All other clinicians completing this activity will be issued a certificate of participation. To participate in this journal CME activity: (1) review the learning objectives and author disclosures; (2) study the education content; (3) take the post-test with a 75% minimum passing score and complete the evaluation at www.medscape.org/journal/eye; (4) view/print certificate.
Credit hours
1.0
Release date: 19 April 2019
Expiration date: 19 April 2020
Post-test link:
https://medscape.org/eye/posttest909693
Authors/Editors disclosure information
S.S. has disclosed the following relevant financial relationships: Served as an advisor or consultant for: Allergan, Inc.; Bayer AG; Boehringer Ingelheim Pharmaceuticals, Inc.; Heidelberg Pharma GmbH; Novartis Pharmaceuticals Corporation; Optos; Roche. Served as a speaker or a member of a speakers bureau for: Allergan, Inc.; Bayer AG; Novartis Pharmaceuticals Corporation; Optos. Received grants for clinical research from: Allergan, Inc.; Bayer AG; Boehringer Ingelheim Pharmaceuticals, Inc.; Novartis Pharmaceuticals Corporation; Optos. L.S.M. has disclosed the following relevant financial relationships: Served as an advisor or consultant for: Genentech, Inc.; IRIDEX Corporation. Served as a speaker or a member of a speakers bureau for: Genentech, Inc.; IRIDEX Corporation. Received grants for clinical research from: Genentech, Inc. S.S.P. has disclosed the following relevant financial relationships: Received grants for clinical research from: Allergan, Inc.; Roche/Novartis Pharmaceuticals Corporation. G.Y. has disclosed the following relevant financial relationships: Served as an advisor or consultant for: Alimera Sciences; Allergan, Inc.; Carl Zeiss Meditec; IRIDEX Corporation. Received grants for clinical research from: Alcon Laboratories, Inc.; IRIDEX Corporation. K-Y.L., T.K., A.Y., L.M., B.P.D-J., A.M. have disclosed no relevant financial relationships.
Journal CME author disclosure information
Laurie Barclay has disclosed no relevant financial relationships.
Abstract
Background/objectives
To evaluate the long-term progression of idiopathic epiretinal membranes (iERMs) with good baseline visual acuity, and to identify predictors of visual decline.
Design
Retrospective case series
Subjects methods
We reviewed records of 145 eyes with iERM and best-corrected visual acuity (BCVA) of 20/40 or greater at presentation, including BCVA, lens status, and central macular thickness (CMT) at yearly visits; as well as anatomic biomarkers including vitreomacular adhesion, pseudohole, lamellar hole, intraretinal cysts, disorganization of the inner retinal layers (DRIL), and disruption of outer retinal layers. Linear mixed effects and mixed-effects Cox proportional hazards models were used to identify clinical and anatomic predictors of vision change and time to surgery.
Results
At presentation, mean BCVA was 0.17 ± 0.10 logMAR units (Snellen 20/30) and mean CMT was 353.3 ± 75.4 μm. After a median follow-up of 3.7 years (range 1–7 years), BCVA declined slowly at 0.012 ± 0.003 logMAR units/year, with phakic eyes declining more rapidly than pseudophakic eyes (0.019 ± 0.003 vs. 0.010 ± 0.004 logMAR units/year). Metamorphopsia, phakic lens status, lamellar hole, and inner nuclear layer cysts were associated with faster visual decline. Cumulative rates of progression to surgery were 2.9, 5.6, 12.2, and 21.1% at years 1–4. Visual symptoms, metamorphopsia, greater CMT, and disruption of outer retinal layers were associated with greater hazard for surgery.
Conclusion
Eyes with iERM and visual acuity ≥ 20/40 experience slow visual decline, with 21% of eyes requiring surgery after 4 years. Clinical and anatomic predictors of vision loss may be distinct from factors associated with earlier surgical intervention.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Hejsek L, Stepanov A, Dohnalova A, Rehakova T, Jiraskova N. The natural evolution of idiophatic epimacular membrane. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161:100–6.
Bu SC, Kuijer R, Li XR, Hooymans JM, Los LI. Idiopathic epiretinal membrane. Retina. 2014;34:2317–35.
Konstantinidis L, Berguiga M, Beknazar E, Wolfensberger TJ. Anatomic and functional outcome after 23-gauge vitrectomy, peeling, and intravitreal triamcinolone for idiopathic macular epiretinal membrane. Retina. 2009;29:1119–27.
Moisseiev E, Kinori M, Moroz I, Priel E, Moisseiev J. 25-Gauge vitrectomy with epiretinal membrane and internal limiting membrane peeling in eyes with very good visual acuity. Curr Eye Res. 2016;41:1387–92.
Fraser-Bell S, Guzowski M, Rochtchina E, Wang JJ, Mitchell P. Five-year cumulative incidence and progression of epiretinal membranes: the Blue Mountains Eye Study. Ophthalmology. 2003;110:34–40.
Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography P. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology. 2014;121:1572–8.
Duker JS, Kaiser PK, Binder S, de Smet MD, Gaudric A, Reichel E, et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology. 2013;120:2611–9.
Haouchine B, Massin P, Tadayoni R, Erginay A, Gaudric A. Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol. 2004;138:732–9.
Hirano M, Morizane Y, Kimura S, Hosokawa M, Shiode Y, Doi S, et al. Assessment of lamellar macular hole and macular pseudohole with a combination of en face and radial B-scan optical coherence tomography imaging. Am J Ophthalmol. 2018;188:29–40.
Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132:1309–16.
Sun JK, Radwan SH, Soliman AZ, Lammer J, Lin MM, Prager SG, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015;64:2560–70.
Yiu G, Wang Z, Munevar C, Tieu E, Shibata B, Wong B, et al. Comparison of chorioretinal layers in rhesus macaques using spectral-domain optical coherence tomography and high-resolution histological sections. Exp Eye Res. 2018;168:69–76.
Lujan BJ, Roorda A, Knighton RW, Carroll J. Revealing Henle’s fiber layer using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1486–92.
Das R, Spence G, Hogg RE, Stevenson M, Chakravarthy U. Disorganization of inner retina and outer retinal morphology in diabetic macular edema. JAMA Ophthalmol. 2018;136:202–8.
Grewal DS, O’Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. Am J Ophthalmol. 2017;177:116–25.
Theodossiadis PG, Theodossiadis GP, Charonis A, Emfietzoglou I, Grigoropoulos VG, Liarakos VS. The photoreceptor layer as a prognostic factor for visual acuity in the secondary epiretinal membrane after retinal detachment surgery: imaging analysis by spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;151:973–80.
Uji A, Murakami T, Nishijima K, Akagi T, Horii T, Arakawa N, et al. Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7, 7 e1.
Chen X, Zhang L, Sohn EH, Lee K, Niemeijer M, Chen J, et al. Quantification of external limiting membrane disruption caused by diabetic macular edema from SD-OCT. Invest Ophthalmol Vis Sci. 2012;53:8042–8.
Coscas F, Coscas G, Lupidi M, Dirani A, Srour M, Semoun O, et al. Restoration of outer retinal layers after aflibercept therapy in exudative AMD: prognostic value. Invest Ophthalmol Vis Sci. 2015;56:4129–34.
Rahman R, Stephenson J. Early surgery for epiretinal membrane preserves more vision for patients. Eye. 2014;28:410–4.
Kofod M, Christensen UC, la Cour M. Deferral of surgery for epiretinal membranes: Is it safe? Results of a randomised controlled trial. Br J Ophthalmol. 2016;100:688–92.
Par GPJ. Should epiretinal membranes be removed before vision drops below 20/40? 35th annual meeting of the American Society of Retina Specialists. Boston, MA; 2017.
Byon IS, Pak GY, Kwon HJ, Kim KH, Park SW, Lee JE. Natural history of idiopathic epiretinal membrane in eyes with good vision assessed by spectral-domain optical coherence tomography. Ophthalmologica. 2015;234:91–100.
Xuejing Chen CS, Jeffery Heier. Progression to Surgery for Epiretinal Membranes with Good Vision. ARVO; May 10, 2017; Harvard: Ophthalmic Consultants of Boston, Tufts Medical Center; 2017.
Michalewski J, Michalewska Z, Cisiecki S, Nawrocki J. Morphologically functional correlations of macular pathology connected with epiretinal membrane formation in spectral optical coherence tomography (SOCT). Graefes Arch Clin Exp Ophthalmol. 2007;245:1623–31.
Frisina R, Pinackatt SJ, Sartore M, Monfardini A, Baldi A, Cesana BM, et al. Cystoid macular edema after pars plana vitrectomy for idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol. 2015;253:47–56.
Jaffe GJ, Martin DF, Toth CA, Daniel E, Maguire MG, Ying GS, et al. Macular morphology and visual acuity in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2013;120:1860–70.
Otani T, Kishi S, Maruyama Y. Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol. 1999;127:688–93.
Sun JP, Chen SN, Chuang CC, Lin CW, Lin CJ, Huang JY, et al. Surgical treatment of lamellar macular hole secondary to epiretinal membrane. Graefe’s Arch Clin Exp Ophthalmol. 2013;251:2681–8.
Takahashi H, Kishi S. Tomographic features of a lamellar macular hole formation and a lamellar hole that progressed to a full-thickness macular hole. Am J Ophthalmol. 2000;130:677–9.
Spaide RF. Closure of an outer lamellar macular hole by vitrectomy: hypothesis for one mechanism of macular hole formation. Retina. 2000;20:587–90.
Pilli S, Lim P, Zawadzki RJ, Choi SS, Werner JS, Park SS. Fourier-domain optical coherence tomography of eyes with idiopathic epiretinal membrane: correlation between macular morphology and visual function. Eye. 2011;25:775–83.
Acknowledgements
KYL: none, Tynisha Koenigsaecker: none, AY: none, LM: none, BDJ: NIH UL1 TR001860 (National Center for Advancing Translational Sciences), LSM: none, AM: NIH K08 EY027463, Research to Prevent Blindness, International Retinal Research Foundation, SSP: none, GY: NIH K08 EY026101, E Matilda Ziegler Foundation for the Blind, ARVO Foundation, Alcon Research Institute, California National Primate Research Center, CITRIS/Banatao Institute
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Lawrence S. Morse: consultancy fees from Genentech. Glenn Yiu: grants from Alcon, Genentech, Iridex; and consultancy fees from Alimera, Allergan, Carl Zeiss Meditec, Iridex, and Southern California Desert Retina. The remaining authors declare that they have no conflict of interest.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Luu, KY., Koenigsaecker, T., Yazdanyar, A. et al. Long-term natural history of idiopathic epiretinal membranes with good visual acuity. Eye 33, 714–723 (2019). https://doi.org/10.1038/s41433-019-0397-z
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41433-019-0397-z
This article is cited by
-
Predictors of treatment outcomes following treat-and-extend regimen with aflibercept for branch retinal vein occlusion: post-hoc analysis of the PLATON trial
Scientific Reports (2023)
-
Idiopathic epiretinal membrane: progression and timing of surgery
Eye (2022)
-
Visual outcomes and incidence of pseudophakic cystoid macular oedema in eyes with cataract and idiopathic epiretinal membrane after two-step sequential surgery
Eye (2022)
-
Characteristics of spontaneous reattachment of rhegmatogenous retinal detachment: optical coherence tomography features and follow-up outcomes
Graefe's Archive for Clinical and Experimental Ophthalmology (2021)


