Table 2 AI-based structure-function in fundus-controlled perimetry (FCP).

From: AI-based structure-function correlation in age-related macular degeneration

Author/Ref.

Title

Disease

Technique

Prediction

Outcome measure

Outcome

Kihara et al. [44]

Estimating retinal sensitivity using optical coherence tomography with deep-learning algorithms in macular telangiectasia type 2

Macular telangiectasia type 2

1. Million-variable deep-learning model (convolutional neural network)

2. Letnet modell

3. Linear regression

• Fundus-controlled perimetry (FCP)

 (a) Mesopic

• Mean absolute error (MAE)

1. 3.36 dB

2. 3.66 dB

3. 4.51 dB

von der Emde and Pfau et al. [25]

Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration

Neovascular age-related macular degeneration

• Random forest (LOO-CV)

• Two scenarios

 1. Without FCP

 2. With FCP data

• Fundus-controlled perimetry (FCP):

 (a) Mesopic

 (b) DA Cyan

 (c) DA Red

• Mean absolute error (MAE)

• Root mean squared error (RMSE)

• Scenario 1

 • 3.94 dB (a) 4.89 dB (b) 4.05 dB (c)

• Scenario 2

 • 2.8 dB (a) 3.7 dB (b) 2.85 dB (c)

Pfau et al. [24]

Determinants of cone- and rod function in geographic atrophy: AI-based structure-function correlation

geographic atrophy secondary to age-related macular degeneration

• Random forest (LOO-CV)

• Two scenarios

 1. Without FCP

 2. With FCP data

• Fundus-controlled perimetry (FCP):

 (a) mesopic

 (b) DA Cyan

 (c) DA Red

• Mean absolute error (MAE)

• Root mean squared error (RMSE)

• Scenario 1

 • 4.64 dB (a) 4.89 dB (b) 4.4 dB (c)

• Scenario 2

 • 2.89 dB (a) 2.86 dB (b) 2.77 dB (c)

Sumaroka et al. [46]

Treatment potential for macular cone vision in leber congenital amaurosis due to CEP290 or NPHP5 Mutations: predictions from artificial intelligence

Retinitis pigmentosa (RP; training)

Congenital Amaurosis (LCA; prediction)

• Random forest (LOO-CV)

• Two models

 1. Thickness and eccentricity

 2. Reflectivity

• Dark-adapted static perimetry

 (a) DA cyan

 (b) DA red

• 95th Percentile limits of agreement (LOA)

RP

 1. 9.6 dB (a)

8.8 dB (b)

 2. 11.9 dB (a)

10.8 dB (b)

LCA

 1. 4.6–17.6 dB

Sumaroka et al. [45]

Foveal therapy in blue cone monochromacy: predictions of visual potential from artificial intelligence

Blue Cone Monochromacy

• Random forest

 (a) Layer thickness

 (b) reflectivity

• Fundus-controlled Perimetry

 (a) Mesopic

• Root mean squared error (RMSE)

(a) 2.91 dB

(b) 2.69 dB

Heß et al. [47]

Mesopic and scotopic light sensitivity and its microstructural correlates in pseudoxanthoma elasticum

Pseudoxanthoma Elasticum

• Random forest (LOO-CV)

• Fundus-controlled perimetry:

 (a) Mesopic

 (b) DA Cyan

 (c) DA Red

• Mean absolute error (MAE)

(a) 4.91 dB

(b) 5.44 dB

(c) 4.99 dB