Table 1 Referable Glaucoma AI performance when compared against final diagnosis following comprehensive glaucoma evaluation.

From: Evaluation of an offline, artificial intelligence system for referable glaucoma screening using a smartphone-based fundus camera: a prospective study

   

Glaucoma specialist diagnosis (n = 243)

 

Confirmed Glaucoma

Glaucoma Suspects

Normal

(a) Confusion matrix—AI system versus final diagnosis by Glaucoma specialists

AI Diagnosis

Referable Glaucoma

 

104 (43%)

15 (6%)

4 (2%)

No Referable Glaucoma

Disc Suspect

3 (1%)

19 (8%)

18 (7%)

No Glaucoma

4 (2%)

22 (9%)

54 (22%)

  

Total

111

56

76

(b) Confusion matrix—AI system versus final diagnosis based on Glaucoma severity (HAP criteria [15]) by the specialists (N = 111 confirmed glaucoma)

   

Glaucoma severity diagnosis by specialists

   

Early

Moderate

Advanced

AI Diagnosis

Referable Glaucoma

 

26

22

56

 

No Referable Glaucoma

Disc Suspect

2

1

 
  

No Glaucoma

2

2

 

(c) AI performance in the detection of Referable Glaucoma (Final diagnosis)

Sensitivity

 

93.7% (95% CI: 87.6–96.9%)

Specificity

 

85.6% (95% CI: 78.6–90.6%)

Accuracy

 

89.3% (95% CI: 84.7–92.9%)

Positive likelihood ratio

 

6.51 (95% CI: 4.28–9.90)

Negative likelihood ratio

 

0.07 (95% CI: 0.04–0.15)

Recall- No glaucoma

 

94.7% (95% CI: 87.2–97.9%)