Table 3 Referable Glaucoma AI performance when compared against image grading using FOP and Kowa fundus camera images.

From: Evaluation of an offline, artificial intelligence system for referable glaucoma screening using a smartphone-based fundus camera: a prospective study

   

Image grading using FOP fundus camera (n = 229)

Image grading using Kowa fundus Camera (n = 233)

   

Likely Glaucoma

Disc Suspect

Unlikely Glaucoma

Likely Glaucoma

Disc Suspect

Unlikely Glaucoma

AI Diagnosis

Referable Glaucoma

 

67 (29%)

26 (11%)

21 (9%)

77 (33%)

24 (10%)

17 (7%)

No Referable Glaucoma

Disc Suspect

0

13 (6%)

25 (11%)

0

12 (5%)

25 (11%)

No Glaucoma

0

6 (3%)

71 (31%)

0

5 (2%)

73 (31%)

(b) AI performance in the detection of Referable Glaucoma (consensus image grading)

 

Image grading using FOP fundus camera

Image grading using Kowa camera

Sensitivity

100 % (95% CI: 94.6–100%)

100% (95% CI: 95.2–100%)

Specificity

71.0% (95% CI: 63.6–77.4%)

73.7% (95% CI: 66.3–80.0%)

Accuracy

79.5% (95% CI: 73.7–84.5%)

82.4% (95% CI: 76.9–87.1%)

Positive likelihood ratio

3.45 (95% CI: 2.71–4.39)

3.80 (95% CI: 2.93–4.95)

Negative likelihood ratio

0.00

0.00

Recall- no glaucoma

82.1 (95% CI: 74.1–88.0%)

85.2% (95% CI: 77.6–90.6%)