Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Retinal optical coherence tomography angiography (OCTA) biomarkers of cardiovascular disease: a review article

Abstract

This review article systematically assesses existing literature on studies employing retinal optical coherence tomography angiography (OCTA) metrics as surrogate biomarkers for cardiovascular disease. A comprehensive, literature review of published peer-reviewed research was conducted within PubMed utilizing the following medical subject headings (MeSH) terms: “optical coherence tomography”, “cardiovascular diseases”, “retina”, and “retinal vessels”. A total of 840 articles were reviewed and selectively filtered with ultimately 50 articles being included. This review article elucidates key findings, identifies limitations, and pinpoints gaps within these investigations. Additionally, this article delineates constraints related to OCTA technology and image processing that presently hinder the widespread adoption of this promising technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Retinal vasculature captured by optical coherence tomography angiography.
Fig. 2: Flowchart with inclusion and exclusion of articles.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Roth GA, Mensah GA, Johnson CO. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76:2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jagannathan R, Patel SA, Ali MK, Narayan KMV. Global Updates on Cardiovascular Disease Mortality Trends and Attribution of Traditional Risk Factors. Curr Diab Rep. 2019;19:44. https://doi.org/10.1007/s11892-019-1161-2

    Article  PubMed  Google Scholar 

  3. Amini M, Zayeri F, Salehi M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: results from global burden of disease study 2017. BMC Public Health. 2021;21:401. https://doi.org/10.1186/s12889-021-10429-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Godo S, Takahashi J, Yasuda S, Shimokawa H. Endothelium in Coronary Macrovascular and Microvascular Diseases. J Cardiovasc Pharmacol. 2021;78:S19–S29. https://doi.org/10.1097/FJC.0000000000001089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dal Canto E, Ceriello A, Rydén L. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol. 2019;26:25–32. https://doi.org/10.1177/2047487319878371

    Article  PubMed  Google Scholar 

  6. Shome JS, Perera D, Plein S, Chiribiri A. Current perspectives in coronary microvascular dysfunction. Microcirc N Y N 1994. 2017;24. https://doi.org/10.1111/micc.12340

  7. Marano P, Wei J, Merz CNB. Coronary Microvascular Dysfunction: What Clinicians and Investigators Should Know. Curr Atheroscler Rep. 2023;25:435–46. https://doi.org/10.1007/s11883-023-01116-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mathew RC, Bourque JM, Salerno M, Kramer CM. Cardiovascular Imaging Techniques to Assess Microvascular Dysfunction. JACC Cardiovasc Imaging. 2020;13:1577–90. https://doi.org/10.1016/j.jcmg.2019.09.006

    Article  PubMed  Google Scholar 

  9. Weber BN, AbuQamar O, Mendonça LS. Abstract 12881: Abnormal Retinal Perfusion Indices by Optical Coherence Tomography Angiography (OCTA) Associate With Abnormal Coronary Flow Reserve. Circulation. 2021;144:A12881–A12881. https://doi.org/10.1161/circ.144.suppl_1.12881

    Article  Google Scholar 

  10. Kromer R, Tigges E, Rashed N, Pein I, Klemm M, Blankenberg S. Association between optical coherence tomography based retinal microvasculature characteristics and myocardial infarction in young men. Sci Rep. 2018;8:5615. https://doi.org/10.1038/s41598-018-24083-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Bacchi S, Chan W. Detection of systemic cardiovascular illnesses and cardiometabolic risk factors with machine learning and optical coherence tomography angiography: a pilot study. Eye Lond Engl. Published online May 23, 2023. https://doi.org/10.1038/s41433-023-02570-4

  12. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia N Y N. 2000;2:9–25.

    Article  CAS  Google Scholar 

  13. Aumann S, Donner S, Fischer J, Müller F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In: Bille JF, ed. High Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics. Springer

  14. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  15. Campbell JP, Zhang M, Hwang TS. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep. 2017;7:42201. https://doi.org/10.1038/srep42201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ong SS, Patel TP, Singh MS. Optical Coherence Tomography Angiography Imaging in Inherited Retinal Diseases. J Clin Med. 2019;8:2078. https://doi.org/10.3390/jcm8122078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hussain N, Hussain A. Diametric measurement of foveal avascular zone in healthy young adults using optical coherence tomography angiography. Int J Retina Vitr. 2016;2:27. https://doi.org/10.1186/s40942-016-0053-8

    Article  Google Scholar 

  18. Wang XN, Cai X, Li SW, Li T, Long D, Wu Q. Wide-field swept-source OCTA in the assessment of retinal microvasculature in early-stage diabetic retinopathy. BMC Ophthalmol. 2022;22:473. https://doi.org/10.1186/s12886-022-02724-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ashraf M, Sampani K, Clermont A, Abu-Qamar O, Rhee J, Silva PS, et al. Vascular Density of Deep, Intermediate and Superficial Vascular Plexuses Are Differentially Affected by Diabetic Retinopathy Severity. Invest Ophthalmol Vis Sci. 2020;61:53. https://doi.org/10.1167/iovs.61.10.53. Aug 3PMID: 32866267; PMCID: PMC7463180

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parrulli S, Corvi F, Cozzi M, Monteduro D, Zicarelli F, Staurenghi G. Microaneurysms visualisation using five different optical coherence tomography angiography devices compared to fluorescein angiography. Br J Ophthalmol. 2021;105:526–30. https://doi.org/10.1136/bjophthalmol-2020-316817.

    Article  PubMed  Google Scholar 

  21. Karampelas M, Sim DA, Chu C, Carreno E, Keane PA, Zarranz-Ventura J, et al. Quantitative analysis of peripheral vasculitis, ischaemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am J Ophthalmol. 2015;159:1161–1168.e1. https://doi.org/10.1016/j.ajo.2015.02.009

    Article  PubMed  Google Scholar 

  22. Wang X, Han Y, Sun G. Detection of the Microvascular Changes of Diabetic Retinopathy Progression Using Optical Coherence Tomography Angiography. Transl Vis Sci Technol. 2021;10:31. https://doi.org/10.1167/tvst.10.7.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). Int J Retina Vitr. 2015;1:5. https://doi.org/10.1186/s40942-015-0005-8

    Article  Google Scholar 

  24. Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022;80:2361–71. https://doi.org/10.1016/j.jacc.2022.11.005

    Article  PubMed  Google Scholar 

  25. Arnould L, Guenancia C, Azemar A. The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2018;59:4299–306. https://doi.org/10.1167/iovs.18-24090

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Jiang J, Zhang Y, Qian YW, Zhang JF, Wang ZL. Retinal and choroidal vascular changes in coronary heart disease: an optical coherence tomography angiography study. Biomed Opt Express. 2019;10:1532–1544. https://doi.org/10.1364/BOE.10.001532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhong P, Hu Y, Jiang L. Retinal Microvasculature Changes in Patients With Coronary Total Occlusion on Optical Coherence Tomography Angiography. Front Med (Lausanne). 2021;8:708491. https://doi.org/10.3389/fmed.2021.708491

    Article  PubMed  Google Scholar 

  28. Eslami V, Mojahedin S, Nourinia R, Tabary M, Khaheshi I. Retinal changes in patients with angina pectoris and anginal equivalents: a study of patients with normal coronary angiography. Rom J Intern Med. 2021;59:174–9. https://doi.org/10.2478/rjim-2020-0039

    Article  PubMed  Google Scholar 

  29. Ren Y, Hu Y, Li C. Impaired retinal microcirculation in patients with non-obstructive coronary artery disease. Microvasc Res. 2023;148:104533. https://doi.org/10.1016/j.mvr.2023.104533

    Article  PubMed  Google Scholar 

  30. Hannappe MA, Arnould L, Méloux A. Vascular density with optical coherence tomography angiography and systemic biomarkers in low and high cardiovascular risk patients. Sci Rep. 2020;10:16718. https://doi.org/10.1038/s41598-020-73861-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhong P, Qin J, Li Z. Development and Validation of Retinal Vasculature Nomogram in Suspected Angina Due to Coronary Artery Disease. J Atheroscler Thromb. 2022;29:579–596. https://doi.org/10.5551/jat.62059

    Article  CAS  PubMed  Google Scholar 

  32. Sideri AM, Kanakis M, Katsimpris A. Correlation Between Coronary and Retinal Microangiopathy in Patients With STEMI. Transl Vis Sci Technol. 2023;12:8. https://doi.org/10.1167/tvst.12.5.8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kim DS, Kim BS, Cho H, Shin JH, Shin YU. Associations between Choriocapillaris Flow on Optical Coherence Tomography Angiography and Cardiovascular Risk Profiles of Patients with Acute Myocardial Infarction. J Pers Med. 2022;12:839. https://doi.org/10.3390/jpm12050839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matulevičiūtė I, Sidaraitė A, Tatarūnas V, Veikutienė A, Dobilienė O, Žaliūnienė D. Retinal and Choroidal Thinning-A Predictor of Coronary Artery Occlusion? Diagnostics (Basel). 2022;12:2016. https://doi.org/10.3390/diagnostics12082016

    Article  PubMed  PubMed Central  Google Scholar 

  35. Seecheran NA, Rafeeq S, Maharaj N. Correlation of Retinal Artery Diameter with Coronary Artery Disease: The RETINA CAD Pilot Study-Are the Eyes the Windows to the Heart? Cardiol Ther. 2023;12:499–509. https://doi.org/10.1007/s40119-023-00320-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu LT, Wang JL, Wang YL. Ophthalmic Artery Morphological and Hemodynamic Features in Acute Coronary Syndrome. Invest Ophthalmol Vis Sci. 2021;62:7. https://doi.org/10.1167/iovs.62.14.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Alan G, Guenancia C, Arnould L. Retinal Vascular Density as A Novel Biomarker of Acute Renal Injury after Acute Coronary Syndrome. Sci Rep. 2019;9:8060. https://doi.org/10.1038/s41598-019-44647-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martín-Fernández J, Alonso-Safont T, Polentinos-Castro E. Impact of hypertension diagnosis on morbidity and mortality: a retrospective cohort study in primary care. BMC Prim Care. 2023;24:79. https://doi.org/10.1186/s12875-023-02036-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beevers G, Lip GY, O'Brien E. ABC of hypertension: The pathophysiology of hypertension. BMJ. 2001;322:912–6. https://doi.org/10.1136/bmj.322.7291.912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takayama K, Kaneko H, Ito Y. Novel Classification of Early-stage Systemic Hypertensive Changes in Human Retina Based on OCTA Measurement of Choriocapillaris. Sci Rep. 2018;8:15163. https://doi.org/10.1038/s41598-018-33580-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng Q, Hu Y, Huang M. Retinal Neurovascular Impairment in Patients with Essential Hypertension: An Optical Coherence Tomography Angiography Study. Invest Ophthalmol Vis Sci. 2020;61:42. https://doi.org/10.1167/iovs.61.8.42

    Article  PubMed  PubMed Central  Google Scholar 

  42. Remolí Sargues L, Monferrer Adsuara C, Castro Navarro V, Navarro Palop C, Montero Hernández J, Cervera Taulet E. Swept-source optical coherence tomography angiography automatic analysis of microvascular changes secondary to systemic hypertension. Eur J Ophthalmol. 2023;33:1452–8. https://doi.org/10.1177/11206721221146674

    Article  PubMed  Google Scholar 

  43. Zeng R, Garg I, Bannai D. Retinal microvasculature and vasoreactivity changes in hypertension using optical coherence tomography-angiography. Graefes Arch Clin Exp Ophthalmol. 2022;260:3505–15. https://doi.org/10.1007/s00417-022-05706-6

    Article  PubMed  Google Scholar 

  44. Xu Q, Sun H, Huang X, Qu Y. Retinal microvascular metrics in untreated essential hypertensives using optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2021;259:395–403. https://doi.org/10.1007/s00417-020-04714-8

    Article  PubMed  Google Scholar 

  45. Pascual-Prieto J, Burgos-Blasco B, Ávila Sánchez-Torija M. Utility of optical coherence tomography angiography in detecting vascular retinal damage caused by arterial hypertension. Eur J Ophthalmol. 2020;30:579–85. https://doi.org/10.1177/1120672119831159

    Article  PubMed  Google Scholar 

  46. Lee WH, Park JH, Won Y. Retinal Microvascular Change in Hypertension as measured by Optical Coherence Tomography Angiography. Sci Rep. 2019;9:156. https://doi.org/10.1038/s41598-018-36474-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chua J, Chin CWL, Hong J. Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens. 2019;37:572–80. https://doi.org/10.1097/HJH.0000000000001916

    Article  CAS  PubMed  Google Scholar 

  48. Sun C, Ladores C, Hong J. Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography. Sci Rep. 2020;10:9580. https://doi.org/10.1038/s41598-020-66736-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lim HB, Lee MW, Park JH, Kim K, Jo YJ, Kim JY. Changes in Ganglion Cell-Inner Plexiform Layer Thickness and Retinal Microvasculature in Hypertension: An Optical Coherence Tomography Angiography Study. Am J Ophthalmol. 2019;199:167–76. https://doi.org/10.1016/j.ajo.2018.11.016

    Article  PubMed  Google Scholar 

  50. Rogowska A, Obrycki Ł, Kułaga Z, Kowalewska C, Litwin M. Remodeling of Retinal Microcirculation Is Associated With Subclinical Arterial Injury in Hypertensive Children. Hypertension. 2021;77:1203–11. https://doi.org/10.1161/HYPERTENSIONAHA.120.16734

    Article  CAS  PubMed  Google Scholar 

  51. Dereli Can G, Korkmaz MF, Can ME. Subclinical retinal microvascular alterations assessed by optical coherence tomography angiography in children with systemic hypertension. J AAPOS. 2020;24:147.e1–147.e6. https://doi.org/10.1016/j.jaapos.2020.02.006

    Article  PubMed  Google Scholar 

  52. Terheyden JH, Wintergerst MWM, Pizarro C. Retinal and Choroidal Capillary Perfusion Are Reduced in Hypertensive Crisis Irrespective of Retinopathy. Transl Vis Sci Technol. 2020;9:42. https://doi.org/10.1167/tvst.9.8.42

    Article  PubMed  PubMed Central  Google Scholar 

  53. Signorelli SS, Marino E, Scuto S, Di Raimondo D. Pathophysiology of Peripheral Arterial Disease (PAD): A Review on Oxidative Disorders. Int J Mol Sci. 2020;21:4393. https://doi.org/10.3390/ijms21124393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wintergerst MWM, Falahat P, Holz FG, Schaefer C, Finger RP, Schahab N. Retinal and choriocapillaris perfusion are associated with ankle-brachial-pressure-index and Fontaine stage in peripheral arterial disease. Sci Rep. 2021;11:11458. https://doi.org/10.1038/s41598-021-90900-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nishi T, Kitahara H, Saito Y, Nishi T, Nakayama T, Fujimoto Y, et al. Invasive assessment of microvascular function in patients with valvular heart disease. Coron Artery Dis. 2018;29:223–9. https://doi.org/10.1097/MCA.0000000000000594

    Article  PubMed  Google Scholar 

  56. Topaloglu C, Bilgin S. Retinal Vascular Density Change in Patients With Aortic Valve Regurgitation. Cardiol Res. 2023;14:309–14. https://doi.org/10.14740/cr1502

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gunzinger JM, Ibrahimi B, Baur J. Assessment of Retinal Capillary Dropout after Transcatheter Aortic Valve Implantation by Optical Coherence Tomography Angiography. Diagnostics (Basel). 2021;11:2399. https://doi.org/10.3390/diagnostics11122399

    Article  PubMed  Google Scholar 

  58. Hayreh SS, Zimmerman MB. Ocular arterial occlusive disorders and carotid artery disease. Ophthalmol Retina. 2017;1:12–18. https://doi.org/10.1016/j.oret.2016.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  59. Batu Oto B, Kılıçarslan O, Kayadibi Y, Yılmaz Çebi A, Adaletli İ, Yıldırım SR. Retinal Microvascular Changes in Internal Carotid Artery Stenosis. J Clin Med. 2023;12:6014. https://doi.org/10.3390/jcm12186014

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lahme L, Marchiori E, Panuccio G. Changes in retinal flow density measured by optical coherence tomography angiography in patients with carotid artery stenosis after carotid endarterectomy. Sci Rep. 2018;8:17161. https://doi.org/10.1038/s41598-018-35556-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee CW, Cheng HC, Chang FC, Wang AG. Optical Coherence Tomography Angiography Evaluation of Retinal Microvasculature Before and After Carotid Angioplasty and Stenting. Sci Rep. 2019;9:14755. https://doi.org/10.1038/s41598-019-51382-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Khurshid S, Choi SH, Weng LC. Frequency of Cardiac Rhythm Abnormalities in a Half Million Adults. Circ Arrhythm Electrophysiol. 2018;11:e006273. https://doi.org/10.1161/CIRCEP.118.006273

    Article  PubMed  PubMed Central  Google Scholar 

  63. Matsuda Y, Masuda M, Asai M, Iida O, Kanda T, Mano T. Central retinal artery occlusion after catheter ablation of atrial fibrillation. Clin Case Rep. 2021;9:e04255. https://doi.org/10.1002/ccr3.4255

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kurtul BE, Kurtul A, Kaypakli O. Impact of catheter ablation procedure on optical coherence tomography angiography findings in patients with ventricular arrhythmia. Rev Assoc Med Bras (1992). 2023;69:e20230489. https://doi.org/10.1590/1806-9282.20230489

    Article  PubMed  Google Scholar 

  65. Ferrières J, Bruckert É, Béliard S, Rabès JP, Farnier M, Krempf M, et al. Familial hypercholesterolemia: A largely underestimated cardiovascular risk. Annales Cardiologie d’angeiologie. 2018;67:1–8.

    Article  Google Scholar 

  66. Eid P, Arnould L, Gabrielle PH. Retinal Microvascular Changes in Familial Hypercholesterolemia: Analysis with Swept-Source Optical Coherence Tomography Angiography. J Pers Med. 2022;12:871. https://doi.org/10.3390/jpm12060871

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yusuf S, Joseph P, Rangarajan S. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study [published correction appears in Lancet. 2020 Mar 7;395(10226):784]. Lancet. 2020;395:795–808. https://doi.org/10.1016/S0140-6736(19)32008-2

    Article  PubMed  Google Scholar 

  68. Sun MT, Huang S, Chan W. Impact of cardiometabolic factors on retinal vasculature: A 3 × 3, 6 × 6 and 8 × 8-mm ocular coherence tomography angiography study. Clin Exp Ophthalmol. 2021;49:260–9. https://doi.org/10.1111/ceo.13913

    Article  PubMed  Google Scholar 

  69. Alnawaiseh M, Lahme L, Treder M, Rosentreter A, Eter N. Short-term effects of exercise on optic nerve and macular perfusion measured by optical coherence tomography angiography. Retina. 2017;37:1642–6. https://doi.org/10.1097/IAE.0000000000001419

    Article  PubMed  Google Scholar 

  70. Nelis P, Schmitz B, Klose A. Correlation analysis of physical fitness and retinal microvasculature by OCT angiography in healthy adults. PLoS One. 2019;14:e0225769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leclaire MD, Eter N, Alnawaiseh M. Optical coherence tomography angiography and cardiovascular diseases. An overview of the current knowledge]. Ophthalmologe. 2021;118:1119–27. https://doi.org/10.1007/s00347-021-01336-1

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hondur AM, Ertop M, Topal S, Sezenoz B, Tezel TH. Optical Coherence Tomography and Angiography of Choroidal Vascular Changes in Congestive Heart Failure. Investigative Ophthalmology & Visual Science. 2020;61:3204.

    Google Scholar 

  73. Lee TH, Lim HB, Nam KY, Kim K, Kim JY. Factors Affecting Repeatability of Assessment of the Retinal Microvasculature Using Optical Coherence Tomography Angiography in Healthy Subjects [published correction appears in Sci Rep. 2020 Mar 11;10:4791. https://doi.org/10.1038/s41598-020-61263-0. Sci Rep. 2019;9(1):16291.

  74. Ponugoti A, Ngo H, Stinnett S, Kelly MP, Vajzovic L. Repeatability and reproducibility of quantitative OCT angiography measurements from table-top and portable Flex Spectralis devices. Graefes Arch Clin Exp Ophthalmol. 2024;262:1785–93. https://doi.org/10.1007/s00417-023-06351-3

    Article  PubMed  Google Scholar 

  75. Girgis JM, Saukkonen D, Hüther A. Optical Coherence Tomography Angiography Analysis Toolbox: A Repeatable and Reproducible Software Tool for Quantitative Optical Coherence Tomography Angiography Analysis. Ophthalmic Surg Lasers Imaging Retina. 2023;54:114–22. https://doi.org/10.3928/23258160-20230206-01

    Article  PubMed  Google Scholar 

  76. Weber BN, Paik JJ, Aghayev A, Klein AL, Mavrogeni SI, Yu PB, et al. Novel Imaging Approaches to Cardiac Manifestations of Systemic Inflammatory Diseases: JACC Scientific Statement. J Am Coll Cardiol. 2023;82:2128–2151. https://doi.org/10.1016/j.jacc.2023.09.819

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aschauer J, Aschauer S, Pollreisz A. Identification of Subclinical Microvascular Biomarkers in Coronary Heart Disease in Retinal Imaging. Transl Vis Sci Technol. 2021;10:24. https://doi.org/10.1167/tvst.10.13.24

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ay İE, Dural İE, Er A, Doğan M, Gobeka HH, Yilmaz ÖF. Is it useful to do OCTA in coronary artery disease patients to improve SYNTAX-based cardiac revascularization decision? Photodiagnosis Photodyn Ther. 2023;42:103540. https://doi.org/10.1016/j.pdpdt.2023.103540

    Article  CAS  PubMed  Google Scholar 

  79. Arnould L, Guenancia C, Gabrielle PH. Influence of cardiac hemodynamic variables on retinal vessel density measurement on optical coherence tomography angiography in patients with myocardial infarction. J Fr Ophtalmol. 2020;43:216–21. https://doi.org/10.1016/j.jfo.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  80. Anjos R, Ferreira A, Barkoudah E, Claggett B, Abegão Pinto L, Miguel A. Application of Optical Coherence Tomography Angiography Macular Analysis for Systemic Hypertension. A Systematic Review and Meta-analysis. Am J Hypertens. 2022;35:356–64. https://doi.org/10.1093/ajh/hpab172

    Article  PubMed  Google Scholar 

  81. Frost S, Nolde JM, Chan J. Retinal capillary rarefaction is associated with arterial and kidney damage in hypertension. Sci Rep. 2021;11:1001. https://doi.org/10.1038/s41598-020-79594-3. Published 2021 Jan 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rakusiewicz K, Kanigowska K, Hautz W, Ziółkowska L. The Impact of Chronic Heart Failure on Retinal Vessel Density Assessed by Optical Coherence Tomography Angiography in Children with Dilated Cardiomyopathy. J Clin Med. 2021;10:2659. https://doi.org/10.3390/jcm10122659. Published 2021 Jun 16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khalilipur E, Mahdizad Z, Molazadeh N. Microvascular and structural analysis of the retina and choroid in heart failure patients with reduced ejection fraction. Sci Rep. 2023;13:5467. https://doi.org/10.1038/s41598-023-32751-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li C, Zhong P, Yuan H. Retinal microvasculature impairment in patients with congenital heart disease investigated by optical coherence tomography angiography. Clin Exp Ophthalmol. 2020;48:1219–28. https://doi.org/10.1111/ceo.13846

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Investigation, material preparation and data curation were performed by Simon D. Archambault and Omar Abu-Qamar. The first draft of the manuscript was written by Simon D. Archambault, Omar Abu-Qamar, David Biery, and Antonio Yaghy. All authors commented on previous versions of the manuscript and assisted in the review and editing process. Supervision was provided by Brittany Weber and Nadia K. Waheed. The final manuscript has been read and approved by all the authors, and the requirements for authorship as stated earlier in this document have been met. Each author believes that the manuscript represents honest work.

Corresponding author

Correspondence to Nadia K. Waheed.

Ethics declarations

Competing interests

NKW is a consultant for Nidek, Topcon, Olix Pharmaceuticals, Iolyx Pharmaceuticals, Aavantgarde Bio, Samsung Bioepis, and Alkeus Pharmaceuticals. She has equity interest in Ocudyne, Valitor, Beacon Therapeutics, and Iolyx Pharmaceuticals. Additionally, she is an office holder in Ocular Therapeutix.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archambault, S.D., Abu-Qamar, O., Biery, D. et al. Retinal optical coherence tomography angiography (OCTA) biomarkers of cardiovascular disease: a review article. Eye 39, 1882–1895 (2025). https://doi.org/10.1038/s41433-025-03780-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03780-8

Search

Quick links