Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Causal relationships between depression, anxiety, and myopia: a two-sample Mendelian randomization study

Abstract

Objectives

To investigate the causal relationship between depression, anxiety, and myopia.

Methods

The multivariable Mendelian randomization (MR) design using summary statistics from independent genome-wide association studies (GWAS) was employed. The anxiety and depression, were used as exposures, and myopia was used as the outcome. Genetic variants associated with depression were derived using GWAS summary statistics from the FinnGen consortium database. Genetic variants associated with anxiety were derived from the Psychiatric Genomics consortium. The inverse-variance-weighted method was the main applied analytic tool and was complemented with comprehensive sensitivity analyses.

Results

A total of 21, 10 SNPs were selected as instrumental variables for depression and anxiety, respectively. Based on the IVW analysis, both depression (OR = 1.010, 95% CI = 1.002–1.018, P = 0.016) and anxiety (OR = 1.083, 95%CI = 1.022–1.149, P = 0.008) increased the risk of myopia. After adjusting in the multivariable MR, the IVW and Egger methods indicated that depression (OR = 1.004, 95%CI = 1.000–1.008, P = 0.030) or anxiety (OR = 1.004, 95%CI = 1.001–1.008, P = 0.026) was still associated with elevated risks of myopia.

Conclusions

The current study identified a causal relationship between anxiety, depression, and an increased risk of myopia. These observations suggest that when developing strategies to control myopia, it is also important to focus on the mental health of children. Further detailed research is needed to fully understand this issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the study design and instrument variable selection.
Fig. 2: Univariable MR analysis of depression, anxiety on myopia.
Fig. 3: Scatterplots and LOO analyses of MR estimates for depression, anxiety on myopia.

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available in the FinnGen consortium (https://r10.finngen.fi/), Psychiatric Genomics Consortium (https://pubmed.ncbi.nlm.nih.gov/26754954/), and MRC IEU OpenGWAS (https://gwas.mrcieu.ac.uk/datasets/ukb-b-6353/).

References

  1. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sankaridurg P, Tahhan N, Kandel H, Naduvilath T, Zou H, Frick KD, et al. IMI Impact of Myopia. Investig Ophthalmol Vis Sci. 2021;62:2.

    Article  Google Scholar 

  3. Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S. Myopia: Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retinal Eye Res. 2023;96:101156.

    Article  Google Scholar 

  4. Ha A, Kim SJ, Shim SR, Kim YK, Jung JH. Efficacy and safety of 8 Atropine concentrations for myopia control in children: a network meta-analysis. Ophthalmology. 2022;129:322–33.

    Article  PubMed  Google Scholar 

  5. Lawrenson JG, Shah R, Huntjens B, Downie LE, Virgili G, Dhakal R, et al. Interventions for myopia control in children: a living systematic review and network meta-analysis. Cochrane Eyes and Vision Group, editor. Cochrane Database of Systematic Reviews [Internet]. 2023 Feb 16 [cited 2023 Oct 27];2023. Available from: http://doi.wiley.com/10.1002/14651858.CD014758.pub2

  6. Morgan IG, Wu PC, Ostrin LA, Tideman JWL, Yam JC, Lan W, et al. IMI risk factors for myopia. Investig Ophthalmol Vis Sci. 2021;62:3.

    Article  Google Scholar 

  7. Troilo D, Smith EL III, Nickla DL, Ashby R, Tkatchenko AV, Ostrin LA, et al. IMI – Report on Experimental Models of Emmetropization and Myopia. Investig Ophthalmol Vis Sci. 2019;60:M31–88.

    Article  Google Scholar 

  8. Ostrin LA, Harb E, Nickla DL, Read SA, Alonso-Caneiro D, Schroedl F, et al. IMI—The dynamic choroid: new insights, challenges, and potential significance for human myopia. Investig Ophthalmol Vis Sci. 2023;64:4.

    Article  CAS  Google Scholar 

  9. Mountjoy E, Davies NM, Plotnikov D, Smith GD, Rodriguez S, Williams CE, et al. Education and myopia: assessing the direction of causality by mendelian randomisation. BMJ. 2018;361:k2022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei CC, Kung YJ, Chen CS, Chang CY, Lin CJ, Tien PT, et al. Allergic conjunctivitis-induced retinal inflammation promotes myopia progression. eBioMedicine. 2018;28:274–86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li FF, Zhu MC, Shao YL, Lu F, Yi QY, Huang XF. Causal relationships between glycemic traits and myopia. Investig Ophthalmol Vis Sci. 2023;64:7.

    Article  CAS  Google Scholar 

  12. Dong XX, Xie JY, Li DL, Dong Y, Zhang XF, Lanca C, et al. Association of sleep traits with myopia in children and adolescents: a meta-analysis and Mendelian randomization study. Prevent Med. 2024;180:107893.

    Article  Google Scholar 

  13. Li Q, Yang J, He Y, Wang T, Zhong L, Zhu Z, et al. Investigation of the psychological health of first-year high school students with myopia in Guangzhou. Brain Behav. 2020;10:e01594.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Gao H, Zhu Y, Zhu Y, Dang W, Wei R, et al. Relationship between myopia and other risk factors with anxiety and depression among chinese university freshmen during the COVID-19 Pandemic. Front Public Health. 2021;9:774237 https://www.frontiersin.org/journals/public-health/articles/10.3389/fpubh.2021.774237/full Dec 1 [cited 2024 May 14].

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sagar R, Dandona R, Gururaj G, Dhaliwal RS, Singh A, Ferrari A, et al. The burden of mental disorders across the states of India: the Global Burden of Disease Study 1990–2017. Lancet Psychiatry. 2020;7:148–61.

    Article  Google Scholar 

  16. Dunne M, Sun J, Nguyen D, Thai TT, Loan K, Dixon J. The influence of educational pressure on the mental health of adolescents in East Asia: methods and tools for research. J Sci. 2010;61:109–22.

  17. Huang J, Dang H, Cai Y, Liu J, Chen Q. Myopia and depression among middle school students in China-is there a mediating role for wearing eyeglasses? Int J Environ Res Public Health. 2022;19:13031.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu X, Meng J, Han C, Wu Q, Du Y, Qi J, et al. CCL2-mediated inflammatory pathogenesis underlies high myopia-related anxiety. Cell Discov. 2023;9:94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li D, Chan VF, Virgili G, Piyasena P, Negash H, Whitestone N, et al. Impact of vision impairment and ocular morbidity and their treatment on depression and anxiety in children: a systematic review. Ophthalmology. 2022;129:1152–70.

    Article  PubMed  Google Scholar 

  20. Yong KL, Gong T, Nongpiur ME, How AC, Lee HK, Cheng L, et al. Myopia in Asian subjects with primary angle closure: implications for glaucoma trends in East Asia. Ophthalmology. 2014;121:1566–71.

    Article  PubMed  Google Scholar 

  21. Dong L, Kang YK, Li Y, Wei WB, Jonas JB. Prevalence and time trends of myopia in children and adolescents in China: a systemic review and meta-analysis. RETINA. 2020;40:399.

    Article  PubMed  Google Scholar 

  22. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  23. Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, et al. Mendelian randomization. Nat Rev Methods Prim. 2022;2:1–21.

    Google Scholar 

  24. Choquet H, Khawaja AP, Jiang C, Yin J, Melles RB, Glymour MM, et al. Association between myopic refractive error and primary open-angle glaucoma: a 2-Sample Mendelian randomization study. JAMA Ophthalmol. 2022;140:864–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  26. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613:508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21:1391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU OpenGWAS data infrastructure [Internet]. bioRxiv; 2020 [cited 2024 May 15]. p. 2020.08.10.244293. Available from: https://www.biorxiv.org/content/10.1101/2020.08.10.244293v1.

  29. Wei D, Wang H, Huang L, Hou M, Liang HG, Shi X, et al. A Mendelian randomization study on the causal relationship between smoking, alcohol consumption, and the development of myopia and astigmatism. Sci Rep. 2024;14:1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burgess S, Thompson SG, CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  31. Palmer TM, Lawlor DA, Harbord RM, Sheehan NA, Tobias JH, Timpson NJ, et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat Methods Med Res. 2012;21:223–42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gill D, Efstathiadou A, Cawood K, Tzoulaki I, Dehghan A. Education protects against coronary heart disease and stroke independently of cognitive function: evidence from Mendelian randomization. Int J Epidemiol. 2019;48:1468–77.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 2018;27:R195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hartwig FP, Davies NM, Hemani G, Davey Smith G. Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int J Epidemiol. 2016;45:1717–26.

    Article  PubMed  Google Scholar 

  38. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shi Q, Wang Q, Wang Z, Lu J, Wang R. Systemic inflammatory regulators and proliferative diabetic retinopathy: a bidirectional Mendelian randomization study. Front Immunol. 2023;14:1088778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan S, Kim JH, Xu P, Wang Z. Causal association between celiac disease and inflammatory bowel disease: a two-sample bidirectional Mendelian randomization study. Front Immunol. 2022;13:1057253.

    Article  CAS  PubMed  Google Scholar 

  41. Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction. Biol Psychiatry. 1998;44:775–7.

    Article  CAS  PubMed  Google Scholar 

  42. Pan W, Zhou L, Han R, Du X, Chen W, Jiang T. Causal associations between kidney function and aortic valve stenosis: a bidirectional Mendelian randomization analysis. Ren Fail. 2024;46:2417742.

  43. Deng MG, Liu F, Liang Y, Wang K, Nie JQ, Liu J. Association between frailty and depression: a bidirectional Mendelian randomization study. Sci Adv. 2023;9:eadi3902.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sanderson E. Multivariable Mendelian randomization and mediation. Cold Spring Harb Perspect Med. 2021;11:a038984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol. 2017;46:1734–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhong T, Huang YQ, Wang G. The causal association of cheese intake with type 2 diabetes mellitus: results from a two-sample Mendelian randomization study. Arch Med Sci. 2024;20:1930–42.

    PubMed  PubMed Central  Google Scholar 

  48. Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet. 2012;379:1739–48.

    Article  PubMed  Google Scholar 

  49. Croll M, Croll LJ. Emotional Glaucoma*. Am J Ophthalmol. 1960;49:297–305.

    Article  CAS  PubMed  Google Scholar 

  50. Jampel HD, Frick KD, Janz NK, Wren PA, Musch DC, Rimal R, et al. Depression and mood indicators in newly diagnosed glaucoma patients. Am J Ophthalmol. 2007;144:238–244.e1.

    Article  PubMed  Google Scholar 

  51. Mabuchi F, Yoshimura K, Kashiwagi K, Shioe K, Yamagata Z, Kanba S, et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma. 2008;17:552.

    Article  PubMed  Google Scholar 

  52. Sittivarakul W, Wongkot P. Anxiety and depression among patients with uveitis and ocular inflammatory disease at a Tertiary Center in Southern Thailand: vision-related quality of life, sociodemographics, and clinical characteristics associated. Ocul Immunol Inflamm. 2019;27:731–42.

    Article  PubMed  Google Scholar 

  53. Pingault JB, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018;19:566–80.

    Article  CAS  PubMed  Google Scholar 

  54. Davies NM, Holmes MV, Smith GD. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ. 2018;362:k601.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Greco M FD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the participants and investigators of the FinnGen study.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 82070994, 82371089), the National Key Research and Development Program of China (grant number 2022YFC3502503).

Author information

Authors and Affiliations

Authors

Contributions

Shengsong Xu: Conceptualization, Writing – original draft, Data curation, Formal Analysis; Xiao Wang: Data curation, Formal Analysis, Writing – original draft; Jinyi Xu: Data curation, Formal Analysis, Writing – original draft; Xianghua Tang: Formal Analysis, Visualization; Wenlong Hao: Resources, Visualization; Chuqi Xiang: Data curation, Formal Analysis; Xingyu Lei: Data curation, Formal Analysis; Mengyi Wang: Supervision, Writing – review & editing; Xiao Yang: Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Mengyi Wang or Xiao Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Wang, X., Xu, J. et al. Causal relationships between depression, anxiety, and myopia: a two-sample Mendelian randomization study. Eye 39, 2204–2210 (2025). https://doi.org/10.1038/s41433-025-03841-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03841-y

Search

Quick links