Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure–function correlates in anterior visual pathway lesions: a systematic review

Abstract

Visual field defects allow for the localisation of pathologic aetiologies along the entire visual system. However, various aetiologies and location of damage might lead to field defect at similar areas. We reviewed the literature systematically for cases of optic neuropathy with well-defined lesions along the anterior visual pathway from the retina to the lateral geniculate with the goal of correlating specific visual field manifestations with the underlying pathology at each segment. We searched MEDLINE, Scopus, Cochrane CENTRAL, and Web of Science databases on June 9, 2024. We included studies reporting damage at any segment of the anterior visual pathway with corresponding VF outcomes. Studies without primary data or new analyses were excluded. We also provided detailed figures from our own practice of cases with specific anterior visual pathway lesions at different locations and their respective visual field manifestations. Pathologies affecting the retinal ganglion cells and optic disc showed strong correlations with specific visual field defects such as arcuate or altitudinal patterns, and exhibited characteristic structural changes. More posterior lesions commonly produced visual field defects related to crossing fibres. These lesions were also associated with distinctive structural indicators. We emphasise the clinical importance of recognising both anterograde (from the retina) and retrograde (from the lateral geniculate body) axonal degeneration in the development of secondary optic atrophy. This review represents a guide for physicians in their assessment when evaluating visual field defects secondary to optic neuropathy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Damage at the level of the retinal ganglion cell layer.
Fig. 3: Damage at the level of optic disc.
Fig. 4: Damage at level of retrobulbar optic nerve.
Fig. 5: Damage at level of retrobulbar optic nerve.
Fig. 6: Damage at level of the optic chiasm.
Fig. 7: Damage at level of the optic chiasm.
Fig. 8: Damage at level of optic tract.

Similar content being viewed by others

References

  1. Prasad S, Galetta SL. Anatomy and physiology of the afferent visual system. Handb Clin Neurol. 2011;102:3–19.

  2. Miller NR, Walsh FB, Hoyt WF. Walsh and Hoyt’s Clinical Neuro-Ophthalmology. Volume 1. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2005.

  3. Melling M, Karimian-Teherani D, Mostler S, Hochmeister S. Three-dimensional morphological characterization of optic nerve fibers by atomic force microscopy and by scanning electron microscopy. Microsc Microanal. 2005;11:333–40.

    Article  CAS  PubMed  Google Scholar 

  4. Wärntges S, Michelson G. Detailed illustration of the visual field representation along the visual pathway to the primary visual cortex: a graphical summary. Ophthalmic Res. 2014;51:37–41.

    Article  PubMed  Google Scholar 

  5. Pawar PR, Booth J, Neely A, McIlwaine G, Lueck CJ. Nerve fibre organisation in the human optic nerve and chiasm: what do we really know? Eye. 2024;38:2457–71.

  6. Snead MP, Rubinstein MP, Jacobs PM. The optics of fundus examination. Surv Ophthalmol. 1992;36:439–45.

    Article  CAS  PubMed  Google Scholar 

  7. Gellrich MM. The fundus slit lamp. Springerplus. 2015;4:56.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jackman W, Webster J. On photographing the eye of the living human retina. Phila Photogr. 1886;23:340–1.

    Google Scholar 

  9. Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.

    Article  CAS  PubMed  Google Scholar 

  10. Fogel-Levin M, Sadda SR, Rosenfeld PJ, Waheed N, Querques G, Freund BK, et al. Advanced retinal imaging and applications for clinical practice: a consensus review. Surv Ophthalmol. 2022;67:1373–90.

    Article  PubMed  Google Scholar 

  11. Berger J. Computerized stereochronoscopy and alternation flicker to detect optic nerve head contour change. Ophthalmology. 2000;107:1316–20.

    Article  CAS  PubMed  Google Scholar 

  12. Coan LJ, Williams BM, Krishna Adithya V, Upadhyaya S, Alkafri A, Czanner S, et al. Automatic detection of glaucoma via fundus imaging and artificial intelligence: a review. Surv Ophthalmol. 2023;68:17–41.

    Article  PubMed  Google Scholar 

  13. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Becker M, Masterson K, Delavelle J, Viallon M, Vargas MI, Becker CD. Imaging of the optic nerve. Eur J Radio. 2010;74:299–313.

    Article  Google Scholar 

  15. Kim JD, Hashemi N, Gelman R, Lee AG. Neuroimaging in ophthalmology. Saudi J Ophthalmol. 2012;26:401–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bursztyn LLCD, De Lott LB, Petrou M, Cornblath WT. Sensitivity of orbital magnetic resonance imaging in acute demyelinating optic neuritis. Canadian J Ophthalmol. 2019;54:242–6.

    Article  Google Scholar 

  17. Menjot de Champfleur N, Menjot de Champfleur S, Galanaud D, Leboucq N, Bonafé A. Imaging of the optic chiasm and retrochiasmal visual pathways. Diagn Inter Imaging. 2013;94:957–71.

    Article  CAS  Google Scholar 

  18. Zhao B, Torun N, Elsayed M, Cheng AD, Brook A, Chang YM, et al. Diagnostic utility of optic nerve measurements with MRI in patients with optic nerve atrophy. Am J Neuroradiol. 2019;40:558–61.

  19. Cowan WM. Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE, editors. Contemporary research methods in neuroanatomy. Berlin: Springer; 1970. p. 217–251.

  20. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D’Anna SA, Kerrigan D, Pease ME. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2001;42:975–82.

    CAS  PubMed  Google Scholar 

  21. Levkovitch-Verbin H, Quigley HA, Martin KRG, Zack DJ, Pease ME, Valenta DF. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Opthalmol Vis Sci. 2003;44:3388.

    Article  Google Scholar 

  22. Zhang X, Sun P, Wang J, Wang Q, Song SK. Diffusion tensor imaging detects retinal ganglion cell axon damage in the mouse model of optic nerve crush. Invest Opthalmol Vis Sci. 2011;52:7001.

    Article  Google Scholar 

  23. Cordeiro MF, Hill D, Patel R, Corazza P, Maddison J, Younis S. Detecting retinal cell stress and apoptosis with DARC: progression from lab to clinic. Prog Retin Eye Res. 2022;86:100976.

    Article  CAS  PubMed  Google Scholar 

  24. Galvao J, Davis BM, Cordeiro MF. In vivo imaging of retinal ganglion cell apoptosis. Curr Opin Pharm. 2013;13:123–7.

    Article  CAS  Google Scholar 

  25. Mosleh R, Labella Álvarez F, Bouthour W, Saindane AM, Dattilo M, Bruce BB, et al. Glaucoma as a cause of optic nerve abnormalities on magnetic resonance imaging. Eye. 2024;38:1626–32.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gupta N. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.

    Article  CAS  PubMed  Google Scholar 

  28. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Opthalmol Vis Sci. 2014;55:632.

    Article  Google Scholar 

  29. Chen Z, Ishikawa H, Wang Y, Wollstein G, Schuman JS. Deep-learning-based group pointwise spatial mapping of structure to function in glaucoma. Ophthalmol Sci. 2024;4:100523.

    Article  PubMed  PubMed Central  Google Scholar 

  30. De Moraes CG, Sun A, Jarukasetphon R, Rajshekhar R, Shi L, Blumberg DM, et al. Association of macular visual field measurements with glaucoma staging systems. JAMA Ophthalmol. 2019;137:139.

    Article  PubMed  Google Scholar 

  31. Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, Garci´a-Feijoo J. Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest Opthalmol Vis Sci. 2008;49:3018.

    Article  Google Scholar 

  32. Gardiner SK, Johnson CA, Cioffi GA. Evaluation of the structure-function relationship in glaucoma. Invest Opthalmol Vis Sci. 2005;46:3712.

    Article  Google Scholar 

  33. Hood DC, La Bruna S, Tsamis E, Thakoor KA, Rai A, Leshno A, et al. Detecting glaucoma with only OCT: implications for the clinic, research, screening, and AI development. Prog Retin Eye Res. 2022;90:101052.

    Article  CAS  PubMed  Google Scholar 

  34. Jansonius NM, Nevalainen J, Selig B, Zangwill LM, Sample PA, Budde WM, et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision Res. 2009;49:2157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shin HY, Park HYL, Jung KI, Choi JA, Park CK. Glaucoma diagnostic ability of ganglion cell–inner plexiform layer thickness differs according to the location of visual field loss. Ophthalmology. 2014;121:93–9.

    Article  PubMed  Google Scholar 

  36. Teng CC, De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology. 2011;118:2409–13.

    Article  PubMed  Google Scholar 

  37. Tsamis E, Bommakanti NK, Sun A, Thakoor KA, De Moraes CG, Hood DC. An automated method for assessing topographical structure–function agreement in abnormal glaucomatous regions. Transl Vis Sci Technol. 2020;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turpin A, Sampson GP, McKendrick AM. Combining ganglion cell topology and data of patients with glaucoma to determine a structure–function map. Invest Opthalmol Vis Sci. 2009;50:3249.

    Article  Google Scholar 

  39. Yohannan J, Boland MV. The evolving role of the relationship between optic nerve structure and function in glaucoma. Ophthalmology. 2017;124:S66–70.

    Article  PubMed  Google Scholar 

  40. Gardiner SK, Fortune B, Demirel S. Localized changes in retinal nerve fiber layer thickness as a predictor of localized functional change in glaucoma. Am J Ophthalmol. 2016;170:75–82.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jansonius NM, Schiefer J, Nevalainen J, Paetzold J, Schiefer U. A mathematical model for describing the retinal nerve fiber bundle trajectories in the human eye: average course, variability, and influence of refraction, optic disc size and optic disc position. Exp Eye Res. 2012;105:70–8.

    Article  CAS  PubMed  Google Scholar 

  42. Turpin A, McKendrick AM. Improving personalized structure to function mapping from optic nerve head to visual field. Transl Vis Sci Technol. 2021;10:19.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hutton WL, Fuller DG, Snyder WB, Fellman RL, Swanson WH. Visual field defects after macular hole surgery. Ophthalmology. 1996;103:2152–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tagawa Y, Suzuki Y, Sakaguchi T, Endoh H, Yokoi M, Kase M. Bilateral neuroretinitis in cat scratch disease with exudative, obliterative vasculitis in the optic disc. Neuro-Ophthalmol. 2014;38:213–6.

    Article  Google Scholar 

  45. Kahook MY, Noecker RJ, Ishikawa H, Wollstein G, Kagemann L, Wojtkowski M, et al. Peripapillary schisis in glaucoma patients with narrow angles and increased intraocular pressure. Am J Ophthalmol. 2007;143:697–9.e1.

    Article  PubMed  Google Scholar 

  46. Foroozan R, Buono LM, Savino PJ. Optic disc structure and shock-induced anterior ischemic optic neuropathy. Ophthalmology. 2003;110:327–31.

    Article  PubMed  Google Scholar 

  47. Golnik KC, Newman SA. Anterior ischemic optic neuropathy associated with macrocytic anemia. J Clin Neuroophthalmol. 1990;10:244–7.

    CAS  PubMed  Google Scholar 

  48. Onaran Z, Tan FU, Yılmazbaş P, Onaran Y. Bilateral non-arteritic anterior ischemic optic neuropathy following second-trimester spontaneous abortion-related haemorrhage. J Clin Neurosci. 2012;19:1445–7.

    Article  PubMed  Google Scholar 

  49. Dosso A, Safran AB, Sunaric G, Burger A. Anterior ischemic optic neuropathy in Graves’ disease. J Neuroophthalmol. 1994;14:170–4.

    Article  CAS  PubMed  Google Scholar 

  50. Yamauchi Y, Cruz JMC, Kaplan HJ, Goto H, Sakai Jichi, Usui M. Suspected simultaneous bilateral anterior ischemic optic neuropathy in a patient with Behçet’s disease. Ocul Immunol Inflamm. 2005;13:317–25.

    Article  PubMed  Google Scholar 

  51. Tanaka H, Shimada Y, Nakamura A, Tanikawa A, Horiguchi M. A case of bilateral optic nerve head drusen-induced inferior altitudinal hemianopsia. Neuro-Ophthalmol. 2015;39:201–6.

    Article  Google Scholar 

  52. Beck RW, Savino PJ, Schatz NJ, Smith CH, Sergott R. Anterior ischaemic optic neuropathy: recurrent episodes in the same eye. Br J Ophthalmol. 1983;67:705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hayreh SS. Ischemic optic neuropathies—where are we now?. Graefes Arch Clin Exp Ophthalmol. 2013;251:1873–84.

    Article  CAS  PubMed  Google Scholar 

  54. Burkhard C, Gleichmann M, Wilhelm H. Optic nerve lesion following neuroborreliosis: a case report. Eur J Ophthalmol. 2001;11:203–6.

    Article  CAS  PubMed  Google Scholar 

  55. Gise R, Heidary G. The visual morbidity of optic nerve head drusen: a longitudinal review. J Am Assoc Pediatr Ophthalmol Strabismus. 2023;27:30.e1–e5.

    Article  Google Scholar 

  56. Tatlıpınar S, Yaylalı V, Bir LS. Bilateral optic disc head drusen manifesting as unilateral episodic visual field obscuration: a case report. Gazi Med J. 2003;14:139–41.

  57. Thurtell MJ, Biousse V, Bruce BB, Newman NJ. Optic nerve head drusen in Black patients. J Neuro-Ophthalmol. 2012;32:13–6.

    Article  Google Scholar 

  58. Kawa P, Nowomiejska K, Białek M, Haszcz D, Czop D, Krukowski J, et al. Glaucoma and drusen of the optic nerve head. Neuro-Ophthalmol. 2009;33:77–83.

    Article  Google Scholar 

  59. Murthy RK, Storm L, Grover S, Brar VS, Chalam KV. In-vivo high resolution imaging of optic nerve head drusen using spectral-domain optical coherence tomography. BMC Med Imaging. 2010;10:11.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hassan A, Gouws P. Optical coherence tomography demonstrating macular retinal nerve fiber thinning in advanced optic disc drusen. Oman J Ophthalmol. 2014;7:84.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Purvin V. Anterior ischemic optic neuropathy in eyes with optic disc drusen. Arch Ophthalmol. 2004;122:48.

    Article  PubMed  Google Scholar 

  62. Rasker MT. Deterioration of visual fields in patients with glaucoma with and without optic disc hemorrhages. Arch Ophthalmol. 1997;115:1257.

    Article  CAS  PubMed  Google Scholar 

  63. Skaat A, De Moraes CG, Bowd C, Sample PA, Girkin CA, Medeiros FA, et al. African descent and glaucoma evaluation study (ADAGES). Ophthalmology. 2016;123:1476–83.

    Article  PubMed  Google Scholar 

  64. Nduaguba C, Ugurlu S, Caprioli J. Acquired pits of the optic nerve in glaucoma, prevalence and associated visual field loss. Acta Ophthalmol Scand. 1998;76:273–7.

    Article  CAS  PubMed  Google Scholar 

  65. Radius RL, Maumenee AE, Green WR. Pit-like changes of the optic nerve head in open-angle glaucoma. Br J Ophthalmol. 1978;62:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Frohman LP, Epstein F, Kupersmith MJ. Atypical visual prognosis with an optic nerve glioma. J Clin Neuroophthalmol. 1985;5:90–4.

    CAS  PubMed  Google Scholar 

  67. Sadun F, Hinton DR, Sadun AA. Rapid growth of an optic nerve ganglioglioma in a patient with neurofibromatosis 1. Ophthalmology. 1996;103:794–9.

    Article  CAS  PubMed  Google Scholar 

  68. Shimo-Oku M, Miyazaki S, Shiraki K, Sugimoto T, Sotani H. Optic nerve involvement in posterior paranasal sinus diseases. Neuro-Ophthalmol. 1989;9:147–55.

    Article  Google Scholar 

  69. Chai Y, Yamazaki H, Kondo A, Oshitari T, Yamamoto S. Case of acute optic nerve compression caused by tuberculum sellae meningioma with optic canal involvement. Clin Ophthalmol. 2012;6:661–6.

  70. Chang EC, Huang JS, Hou YC, Huang CH, Wang IH. Optical coherence tomography as a useful adjunct in the early detection of meningioma with optic nerve compression. Taiwan J Ophthalmol. 2022;12:354.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Demura M, Sasagawa Y, Hayashi Y, Tachibana O, Nakada M. Inferior temporal quadrantanopia associated with pituitary adenomas and a potential mechanism of excessive optic nerve bending. Surg Neurol Int. 2024;15:70.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Frisen L, Sjostrand J, Norrsell K, Lindgren S. Cyclic compression of the intracranial optic nerve: patterns of visual failure and recovery. J Neurol Neurosurg Psychiatry. 1976;39:1109–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grob SR, Campbell AA, Gross A, Cestari DM. Hemorrhage within the optic nerve from a cavernous hemangioma of the optic disc. J Neuro-Ophthalmol. 2015;35:277–9.

    Article  Google Scholar 

  74. Kim JY, Kim HJ, Kim CH, Lee JG, Yoon JH. Optic nerve injury secondary to endoscopic sinus surgery: an analysis of three cases. Yonsei Med J. 2005;46:300.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kural C, Kullmann M, Weichselbaum A, Schuhmann MU. Congenital left temporal large arachnoid cyst causing intraorbital optic nerve damage in the second decade of life. Childs Nerv Syst. 2016;32:575–8.

    Article  PubMed  Google Scholar 

  76. Micieli JA, Margolin EA. Optic disc cupping due to dolichoectatic internal carotid artery optic nerve compression. J Neuro-Ophthalmol. 2021;41:e560–5.

    Article  Google Scholar 

  77. Chaugule P, Varma DR, Patil Chhablani P. Orbital apex syndrome secondary to optic nerve cysticercosis. Int Ophthalmol. 2019;39:1151–4.

    Article  PubMed  Google Scholar 

  78. Lee AG, Woo SY, Miller NR, Safran AB, Grant WH, Butler EB. Improvement in visual function in an eye with a presumed optic nerve sheath meningioma after treatment with three-dimensional conformal radiation therapy. J Neuroophthalmol. 1996;16:247–51.

    Article  CAS  PubMed  Google Scholar 

  79. Lee KM, Hwang JM, Woo SJ. Optic disc drusen associated with optic nerve tumors. Optometry Vis Sci. 2015;92:S67–75.

    Article  Google Scholar 

  80. Rasool N, Stefater JA, Eliott D, Cestari DM. Isolated presumed optic nerve gumma, a rare presentation of neurosyphilis. Am J Ophthalmol Case Rep. 2017;6:7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wabbels B, Demmler A, Seitz J, Woenckhaus M, Bloß HG, Lorenz B. Unilateral adult malignant optic nerve glioma. Graefes Arch Clin Exp Ophthalmol. 2004;242:741–8.

    Article  PubMed  Google Scholar 

  82. Keltner JL. Baseline visual field profile of optic neuritis. Arch Ophthalmol. 1993;111:231.

    Article  CAS  PubMed  Google Scholar 

  83. Keltner JL. Visual field profile of optic neuritis. Arch Ophthalmol. 1994;112:946.

    Article  CAS  PubMed  Google Scholar 

  84. Keltner JL. Visual field profile of optic neuritis. Arch Ophthalmol. 2010;128:330.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Al-Ryalat N, AlRyalat SA, Malkawi L, Azzam M, Mohsen S. Quantification of Optic Nerve Cross Sectional Area on MRI: A Novel Protocol using Fiji Software. J Vis Exp. (JoVE). 2021:e62752.

  86. Trip SA, Schlottmann PG, Jones SJ, Li WY, Garway-Heath DF, Thompson AJ, et al. Optic nerve atrophy and retinal nerve fibre layer thinning following optic neuritis: evidence that axonal loss is a substrate of MRI-detected atrophy. Neuroimage. 2006;31:286–93.

    Article  PubMed  Google Scholar 

  87. Muta D, Nishi T, Koga K, Yamashiro S, Fujioka S, Kuratsu JI. Cavernous malformation of the optic chiasm: case report. Br J Neurosurg. 2006;20:312–5.

    Article  PubMed  Google Scholar 

  88. Regli L, de Tribolet N, Regli F, Bogousslavsky J. Chiasmal apoplexy: haemorrhage from a cavernous malformation in the optic chiasm. J Neurol Neurosurg Psychiatry. 1989;52:1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Al-Dahmani K, Mohammad S, Imran F, Theriault C, Doucette S, Zwicker D, et al. Sellar masses: an epidemiological study. Can J Neurol Sci. 2016;43:291–7.

    Article  PubMed  Google Scholar 

  90. Kawasaki A. Optic tract syndrome: an unusual presentation of multicentric malignant optic glioma of adulthood. Am J Case Rep. 2009;10:213–5.

    Google Scholar 

  91. Ning X, Xu K, Luo Q, Qu L, Yu J. Uncommon cavernous malformation of the optic chiasm: a case report. Eur J Med Res. 2012;17:24.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Morgan ML, Palau AEB, Soeken T, Lee AG. Band cupping. JAMA Ophthalmol. 2015;133:233.

    Article  PubMed  Google Scholar 

  93. Gálvez-Ruiz A, Arishi N. Band atrophy of the optic nerve: a report on different anatomical locations in three patients. Saudi J Ophthalmol. 2013;27:65–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kawazoe KM, Ilsen PF. Visual consequences of optic tract damage. Clin Refract Optom. 2020;31:184–92.

  95. McLaurin EB, Harrington DO. Intracranial sarcoidosis with optic tract and temporal lobe involvement. Am J Ophthalmol. 1978;86:656–60.

    Article  CAS  PubMed  Google Scholar 

  96. Romero RS, Gutierrez I, Wang E, Reder AT, Bhatti MT, Bernard JT, et al. Homonymous hemimacular thinning. J Neuro-Ophthalmol. 2012;32:150–3.

    Article  Google Scholar 

  97. Monteiro MLR, Hokazone K. Retinal nerve fiber layer loss documented by optical coherence tomography in patients with optic tract lesions. Rev Bras Oftalmol. 2009;68:48–52.

    Article  Google Scholar 

  98. Gunderson CH, Hoyt WF. Geniculate hemianopia: incongruous homonymous field defects in two patients with partial lesions of the lateral geniculate nucleus. J Neurol Neurosurg Psychiatry. 1971;34:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frisen L, Holmegaard L, Rosencrantz M. Sectorial optic atrophy and homonymous, horizontal sectoranopia: a lateral choroidal artery syndrome?. J Neurol Neurosurg Psychiatry. 1978;41:374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Luco C, Hoppe A, Schweitzer M, Vicuna X, Fantin A. Visual field defects in vascular lesions of the lateral geniculate body. J Neurol Neurosurg Psychiatry. 1992;55:12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shacklett DE, O’Connor PS, Dorwart RH, Linn D, Carter JE. Congruous and incongruous sectoral visual field defects with lesions of the lateral geniculate nucleus. Am J Ophthalmol. 1984;98:283–90.

    Article  CAS  PubMed  Google Scholar 

  102. Kosmorsky G, Lancione RR. When fighting makes you see black holes instead of stars. J Neuroophthalmol. 1998;18:255–7.

    Article  CAS  PubMed  Google Scholar 

  103. Gloor BP. Franz Fankhauser: the father of the automated perimeter. Surv Ophthalmol. 2009;54:417–25.

    Article  PubMed  Google Scholar 

  104. Pham AT, Ramulu PY, Boland MV, Yohannan J. The effect of transitioning from SITA standard to SITA faster on visual field performance. Ophthalmology. 2021;128:1417–25.

    Article  PubMed  Google Scholar 

  105. Yan F, Guo S, Chai Y, Zhang L, Liu K, Lu Q, et al. Partial optic nerve transection in rats: A model established with a new operative approach to assess secondary degeneration of retinal ganglion cells. J Vis Exp.: Jove. 2017:56272.

  106. Keltner JL. Classification of visual field abnormalities in the ocular hypertension treatment study. Arch Ophthalmol. 2003;121:643.

    Article  PubMed  Google Scholar 

  107. Johnson CA, Keltner JL, Cello KE, Edwards M, Kass MA, Gordon MO, et al. Baseline visual field characteristics in the ocular hypertension treatment study. Ophthalmology. 2002;109:432–7.

    Article  PubMed  Google Scholar 

  108. Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.

    Article  PubMed  Google Scholar 

  109. Zhang YX, Huang HB, Wei SH. Clinical characteristics of nonglaucomatous optic disc cupping. Exp Ther Med. 2014;7:995–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Saif Aldeen Alryalat: conceptualisation, methodology, writing—original draft. Janet L. Fan: investigation, data curation. Henry C. Skrehot: investigation, data curation. Paulina Truong: investigation, data curation. Meghan Hunt: investigation, data curation. Ayman Musleh: data curation, supervision. Osama Al-Deyabat: writing—original draft, supervision. Lna Malkawi: writing—original draft. Deidra St. Peter: writing—review & editing. Cara Capitena Young: writing—review & editing. Leonard K. Seibold: supervision, writing—review & editing. Malik Y. Kahook: conceptualisation, supervision, writing—review & editing. Andrew G. Lee: conceptualisation, supervision, writing—review & editing.

Corresponding author

Correspondence to Saif Aldeen Alryalat.

Ethics declarations

Competing interests

A.G.L. is a member of the Eye editorial board.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alryalat, S.A., Fan, J.L., Skrehot, H.C. et al. Structure–function correlates in anterior visual pathway lesions: a systematic review. Eye 39, 2340–2352 (2025). https://doi.org/10.1038/s41433-025-03868-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03868-1

Search

Quick links