Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Large language models in ophthalmology: a scoping review on their utility for clinicians, researchers, patients, and educators

Abstract

Since its introduction in November 2022, the public interest in the utility of large language models (LLMs) has gained widespread adoption among individual consumers and among medical practitioners, with a consequent increase in publications describing their utility in healthcare. This review highlights original research articles on how LLM’s can be utilized by various stakeholders in ophthalmology through clinical assistance, patient education, medical education, and research. ChatGPT consistently responds with better accuracy and quality than other LLMs across various studies employing different methodologies, with newer iterations offering more advantages. Studies have likewise identified limitations of LLMs, which include hallucination, inability to interpret image-based prompts, and limited performance across non-English languages. As newer iterations of available and more advanced models with image processing are currently being introduced, generative artificial intelligence should be continuously monitored for its implications in eye care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Thirunavukarasu AJ, Ting DSJ, Elangovan K, Gutierrez L, Tan TF, Ting DSW. Large language models in medicine. Nat Med. 2023;29:1930–40. https://doi.org/10.1038/s41591-023-02448-8.

    Article  CAS  PubMed  Google Scholar 

  2. Cascella M, Semeraro F, Montomoli J, Bellini V, Piazza O, Bignami E. The breakthrough of large language models release for medical applications: 1-year timeline and perspectives. J Med Syst. 2024;48:22. https://doi.org/10.1007/s10916-024-02045-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Eysenbach G. The role of ChatGPT, generative language models, and artificial intelligence in medical education: a conversation with ChatGPT and a call for papers. JMIR Med Educ. 2023;9:e46885. https://doi.org/10.2196/46885.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zandi R, Fahey JD, Drakopoulos M, Bryan JM, Dong S, Bryar PJ, et al. Exploring diagnostic precision and triage proficiency: a comparative study of GPT-4 and bard in addressing common ophthalmic complaints. Bioengineering. 2024;11:120. https://doi.org/10.3390/bioengineering11020120.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lyons RJ, Arepalli SR, Fromal O, Choi JD, Jain N. Artificial intelligence chatbot performance in triage of ophthalmic conditions. Can J Ophthalmol. 2024;59:e301–e308. https://doi.org/10.1016/j.jcjo.2023.07.016.

    Article  PubMed  Google Scholar 

  6. Singh S, Djalilian A, Ali MJ. ChatGPT and ophthalmology: exploring its potential with discharge summaries and operative notes. Semin Ophthalmol. 2023;38:503–7. https://doi.org/10.1080/08820538.2023.2209166.

    Article  PubMed  Google Scholar 

  7. Gopalakrishnan N, Joshi A, Chhablani J, Yadav NK, Reddy NG, Rani PK, et al. Recommendations for initial diabetic retinopathy screening of diabetic patients using large language model-based artificial intelligence in real-life case scenarios. Int J Retin Vitreous. 2024;10:11. https://doi.org/10.1186/s40942-024-00533-9.

    Article  Google Scholar 

  8. Choudhary A, Gopalakrishnan N, Joshi A, Balakrishnan D, Chhablani J, Yadav NK, et al. Recommendations for diabetic macular edema management by retina specialists and large language model-based artificial intelligence platforms. Int J Retin Vitreous. 2024;10:22. https://doi.org/10.1186/s40942-024-00544-6.

    Article  Google Scholar 

  9. Liu X, Wu J, Shao A, Shen W, Ye P, Wang Y, et al. Uncovering language disparity of ChatGPT on retinal vascular disease classification: cross-sectional study. J Med Internet Res. 2024;26:e51926. https://doi.org/10.2196/51926.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mohammadi SS, Nguyen QD. A user-friendly approach for the diagnosis of diabetic retinopathy using ChatGPT and automated machine learning. Ophthalmol Sci. 2024;4:100495. https://doi.org/10.1016/j.xops.2024.100495.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Zhang W, Xu P, Zhao Z, Zheng Y, Shi D, et al. FFA-GPT: an automated pipeline for fundus fluorescein angiography interpretation and question-answer. NPJ Digit Med. 2024;7:111. https://doi.org/10.1038/s41746-024-01101-z.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Zhang W, Zhao Z, Xu P, Zheng Y, Shi D, et al. ICGA-GPT: report generation and question answering for indocyanine green angiography images. Br J Ophthalmol. 2024;108:1450–6. https://doi.org/10.1136/bjo-2023-324446.

    Article  PubMed  Google Scholar 

  13. Lin Z, Zhang D, Shi D, Xu R, Tao Q, Wu L, et al. Contrastive pre-training and linear interaction attention-based transformer for universal medical reports generation. J Biomed Inf. 2023;138:104281. https://doi.org/10.1016/j.jbi.2023.104281.

    Article  Google Scholar 

  14. Chen X, Xu P, Li Y, Zhang W, Song F, He M, et al. ChatFFA: an ophthalmic chat system for unified vision-language understanding and question answering for fundus fluorescein angiography. iScience. 2024;27:110021. https://doi.org/10.1016/j.isci.2024.110021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carlà MM, Gambini G, Baldascino A, Giannuzzi F, Boselli F, Crincoli E, et al. Exploring AI-chatbots’ capability to suggest surgical planning in ophthalmology: ChatGPT versus Google Gemini analysis of retinal detachment cases. Br J Ophthalmol. 2024;108:1457–69. https://doi.org/10.1136/bjo-2023-325143.

    Article  PubMed  Google Scholar 

  16. Huang X, Raja H, Madadi Y, Delsoz M, Poursoroush A, Kahook MY, et al. Predicting glaucoma before onset using a large language model chatbot. Am J Ophthalmol. 2024;266:289–99. https://doi.org/10.1016/j.ajo.2024.05.022.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13. https://doi.org/10.1001/archopht.120.6.701.

    Article  PubMed  Google Scholar 

  18. Carlà MM, Gambini G, Baldascino A, Boselli F, Giannuzzi F, Margollicci F, et al. Large language models as assistance for glaucoma surgical cases: a ChatGPT vs. Google Gemini comparison. Graefes Arch Clin Exp Ophthalmol. 2024;262:2945–59. https://doi.org/10.1007/s00417-024-06470-5.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rojas-Carabali W, Sen A, Agarwal A, Tan G, Cheung CY, Rousselot A, et al. Chatbots Vs. human experts: evaluating diagnostic performance of chatbots in uveitis and the perspectives on AI adoption in ophthalmology. Ocul Immunol Inflamm. 2024;32:1591–8. https://doi.org/10.1080/09273948.2023.2266730.

    Article  PubMed  Google Scholar 

  20. Ćirković A, Katz T. Exploring the potential of ChatGPT-4 in predicting refractive surgery categorizations: comparative study. JMIR Form Res. 2023;7:e51798. https://doi.org/10.2196/51798.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ali MJ. ChatGPT and lacrimal drainage disorders: performance and scope of improvement. Ophthalmic Plast Reconstr Surg. 2023;39:221–5. https://doi.org/10.1097/IOP.0000000000002418.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tailor PD, Dalvin LA, Chen JJ, Iezzi R, Olsen TW, Scruggs BA, et al. A comparative study of responses to retina questions from either experts, expert-edited large language models, or expert-edited large language models alone. Ophthalmol Sci. 2024;4:100485. https://doi.org/10.1016/j.xops.2024.100485.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pushpanathan K, Lim ZW, Er Yew SM, Chen DZ, Hui’En Lin HA, Lin Goh JH, et al. Popular large language model chatbots’ accuracy, comprehensiveness, and self-awareness in answering ocular symptom queries. iScience. 2023;26:108163. https://doi.org/10.1016/j.isci.2023.108163.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tailor PD, Xu TT, Fortes BH, Iezzi R, Olsen TW, Starr MR, et al. Appropriateness of ophthalmology recommendations from an online chat-based artificial intelligence model. Mayo Clin Proc Digit Health. 2024;2:119–28. https://doi.org/10.1016/j.mcpdig.2024.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barclay KS, You JY, Coleman MJ, Mathews PM, Ray VL, Riaz KM, et al. Quality and agreement with scientific consensus of ChatGPT information regarding corneal transplantation and Fuchs dystrophy. Cornea. 2024;43:746–50. https://doi.org/10.1097/ICO.0000000000003439.

    Article  PubMed  Google Scholar 

  26. Kianian R, Sun D, Crowell EL, Tsui E. The use of large language models to generate education materials about uveitis. Ophthalmol Retin. 2024;8:195–201. https://doi.org/10.1016/j.oret.2023.09.008.

    Article  Google Scholar 

  27. Dihan Q, Chauhan MZ, Eleiwa TK, Hassan AK, Sallam AB, Khouri AS, et al. Using large language models to generate educational materials on childhood glaucoma. Am J Ophthalmol. 2024;265:28–38. https://doi.org/10.1016/j.ajo.2024.04.004.

    Article  PubMed  Google Scholar 

  28. Ferro Desideri L, Roth J, Zinkernagel M, Anguita R. Application and accuracy of artificial intelligence-derived large language models in patients with age related macular degeneration. Int J Retin Vitreous. 2023;9:71. https://doi.org/10.1186/s40942-023-00511-7.

    Article  Google Scholar 

  29. Wu G, Zhao W, Wong A, Lee DA. Patients with floaters: answers from virtual assistants and large language models. Digit Health. 2024;10:20552076241229933. https://doi.org/10.1177/20552076241229933.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Milad D, Antaki F, Milad J, Farah A, Khairy T, Mikhail D, et al. Assessing the medical reasoning skills of GPT-4 in complex ophthalmology cases. Br J Ophthalmol. 2024;108:1398–405. https://doi.org/10.1136/bjo-2023-325053.

    Article  PubMed  Google Scholar 

  31. Antaki F, Milad D, Chia MA, Giguère CÉ, Touma S, El-Khoury J, et al. Capabilities of GPT-4 in ophthalmology: an analysis of model entropy and progress towards human-level medical question answering. Br J Ophthalmol. 2024;108:1371–8. https://doi.org/10.1136/bjo-2023-324438.

    Article  PubMed  Google Scholar 

  32. Antaki F, Touma S, Milad D, El-Khoury J, Duval R. Evaluating the performance of ChatGPT in ophthalmology: an analysis of its successes and shortcomings. Ophthalmol Sci. 2023;3:100324. https://doi.org/10.1016/j.xops.2023.100324.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Botross M, Mohammadi SO, Montgomery K, Crawford C. Performance of Google’s artificial intelligence chatbot “Bard” (now “Gemini”) on ophthalmology board exam practice questions. Cureus. 2024;16:e57348. https://doi.org/10.7759/cureus.57348.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Haddad F, Saade JS. Performance of ChatGPT on ophthalmology-related questions across various examination levels: observational study. JMIR Med Educ. 2024;10:e50842. https://doi.org/10.2196/50842.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fowler T, Pullen S, Birkett L. Performance of ChatGPT and Bard on the official part 1 FRCOphth practice questions. Br J Ophthalmol. 2024;108:1379–83. https://doi.org/10.1136/bjo-2023-324091.

    Article  PubMed  Google Scholar 

  36. Thirunavukarasu AJ, Mahmood S, Malem A, Foster WP, Sanghera R, Hassan R, et al. Large language models approach expert-level clinical knowledge and reasoning in ophthalmology: a head-to-head cross-sectional study. PLOS Digit Health. 2024;3:e0000341. https://doi.org/10.1371/journal.pdig.0000341.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Panthier C, Gatinel D. Success of ChatGPT, an AI language model, in taking the French language version of the European Board of Ophthalmology examination: a novel approach to medical knowledge assessment. J Fr Ophtalmol. 2023;46:706–11. https://doi.org/10.1016/j.jfo.2023.05.006.

    Article  CAS  PubMed  Google Scholar 

  38. Sakai D, Maeda T, Ozaki A, Kanda GN, Kurimoto Y, Takahashi M. Performance of ChatGPT in board examinations for specialists in the Japanese Ophthalmology Society. Cureus. 2023;15:e49903. https://doi.org/10.7759/cureus.49903.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cai LZ, Shaheen A, Jin A, Fukui R, Yi JS, Yannuzzi N, et al. Performance of generative large language models on ophthalmology board-style questions. Am J Ophthalmol. 2023;254:141–9. https://doi.org/10.1016/j.ajo.2023.05.024.

    Article  PubMed  Google Scholar 

  40. Jiao C, Edupuganti NR, Patel PA, Bui T, Sheth V. Evaluating the artificial intelligence performance growth in ophthalmic knowledge. Cureus. 2023;15:e45700. https://doi.org/10.7759/cureus.45700.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moshirfar M, Altaf AW, Stoakes IM, Tuttle JJ, Hoopes PC. Artificial intelligence in ophthalmology: a comparative analysis of GPT-3.5, GPT-4, and human expertise in answering StatPearls questions. Cureus. 2023;15:e40822. https://doi.org/10.7759/cureus.40822.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lim ZW, Pushpanathan K, Yew SME, Lai Y, Sun CH, Lam JSH, et al. Benchmarking large language models’ performances for myopia care: a comparative analysis of ChatGPT-3.5, ChatGPT-4.0, and Google Bard. EBioMedicine. 2023;95:104770. https://doi.org/10.1016/j.ebiom.2023.104770.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marshall RF, Mallem K, Xu H, Thorne J, Burkholder B, Chaon B, et al. Investigating the accuracy and completeness of an artificial intelligence large language model about uveitis: an evaluation of ChatGPT. Ocul Immunol Inflamm. 2024;32:2052–5. https://doi.org/10.1080/09273948.2024.2317417.

    Article  PubMed  Google Scholar 

  44. Delsoz M, Raja H, Madadi Y, Tang AA, Wirostko BM, Kahook MY, et al. The use of ChatGPT to assist in diagnosing glaucoma based on clinical case reports. Ophthalmol Ther. 2023;12:3121–32. https://doi.org/10.1007/s40123-023-00805-x.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Taloni A, Borselli M, Scarsi V, Rossi C, Coco G, Scorcia V, et al. Comparative performance of humans versus GPT-4.0 and GPT-3.5 in the self-assessment program of American Academy of Ophthalmology. Sci Rep. 2023;13:18562. https://doi.org/10.1038/s41598-023-45837-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singer MB, Fu JJ, Chow J, Teng CC. Development and evaluation of aeyeconsult: a novel ophthalmology Chatbot leveraging verified textbook knowledge and GPT-4. J Surg Educ. 2024;81:438–43. https://doi.org/10.1016/j.jsurg.2023.11.019.

    Article  PubMed  Google Scholar 

  47. Raja H, Munawar A, Mylonas N, Delsoz M, Madadi Y, Elahi M, et al. Automated category and trend analysis of scientific articles on ophthalmology using large language models: development and usability study. JMIR Form Res. 2024;8:e52462. https://doi.org/10.2196/52462.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dupps WJ Jr. Artificial intelligence and academic publishing. J Cataract Refract Surg. 2023;49:655–6. https://doi.org/10.1097/j.jcrs.0000000000001223.

    Article  PubMed  Google Scholar 

  49. Van Gelder RN. The pros and cons of artificial intelligence authorship in ophthalmology. Ophthalmology. 2023;130:670–1. https://doi.org/10.1016/j.ophtha.2023.05.018.

    Article  PubMed  Google Scholar 

  50. Bressler NM. What artificial intelligence chatbots mean for editors, authors, and readers of peer-reviewed ophthalmic literature. JAMA Ophthalmol. 2023;141:514–5. https://doi.org/10.1001/jamaophthalmol.2023.1370.

    Article  PubMed  Google Scholar 

  51. Apellis Pharmaceuticals. FDA approves Syfovre (pegcetacoplan) injection, the first and only in its class. 2023. Available at: https://investors.apellis.com/news-releases/news-release-details/fda-approves-syfovretm-pegcetacoplan-injection-first-and-only. Accessed August 18, 2024.

  52. EyesOnEyeCare. FDA approves IVERIC bio’s IZERVAY (branciciclovir injection) for geographic atrophy. 2023. Available at: https://glance.eyesoneyecare.com/stories/2023-08-07/fda-approves-iveric-bio-s-izervay-for-ga/. Accessed August 18, 2024.

  53. Volpe NJ, Mirza RG. Chatbots, artificial intelligence, and the future of scientific reporting. JAMA Ophthalmol. 2023;141:824–5. https://doi.org/10.1001/jamaophthalmol.2023.3344.

    Article  PubMed  Google Scholar 

  54. Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv. 2022, https://arxiv.org/abs/2201.11903.

  55. Anisuzzaman DM, Malins JG, Friedman PA, Attia ZI. Fine-tuning large language models for specialized use cases. Mayo Clin Proc Digit Health. 2024;3:100184. https://doi.org/10.1016/j.mcpdig.2024.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P, et al. Training language models to follow instructions with human feedback. In: Proceedings of the Neural Information Processing Systems (NeurIPS) 2022; 2022. https://doi.org/10.48550/arXiv.2203.02155.

  57. Lewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Proceedings of the 36th International Conference on Machine Learning. 2019:5243–52. https://doi.org/10.5555/3495724.3496517.

  58. Nguyen Q, Nguyen DA, Dang K, Liu S, Nguyen K, Wang SY, et al. Advancing question-answering in ophthalmology with retrieval-augmented generation (RAG): Benchmarking open-source and proprietary large language models. J-GLOBAL. 2024. Available from: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202402211872512470.

  59. Chen JS, Reddy AJ, Al-Sharif E, Shoji MK, Kalaw FGP, Eslani M, et al. Analysis of ChatGPT responses to ophthalmic cases: can ChatGPT think like an ophthalmologist. Ophthalmol Sci. 2024;5:100600. https://doi.org/10.1016/j.xops.2024.100600.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ullah E, Parwani A, Baig MM, Singh R. Challenges and barriers of using large language models (LLM) such as ChatGPT for diagnostic medicine with a focus on digital pathology - a recent scoping review. Diagn Pathol. 2024;19:43. https://doi.org/10.1186/s13000-024-01464-7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Celi LA, Cellini J, Charpignon ML, Dee EC, Dernoncourt F, Eber R, et al. Sources of bias in artificial intelligence that perpetuate healthcare disparities-a global review. PLOS Digit Health. 2022;1:e0000022. https://doi.org/10.1371/journal.pdig.0000022.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dychiao RGK, Alberto IRI, Artiaga JCM, Salongcay RP, Celi LA. Large language model integration in Philippine ophthalmology: early challenges and steps forward. Lancet Digit Health. 2024;6:e308. https://doi.org/10.1016/S2589-7500(24)00064-5.

    Article  CAS  PubMed  Google Scholar 

  63. Restrepo D, Wu C, Tang Z, Shuai Z, Phan TNM, Ding J-E, et al. Multi-OphthaLingua: a multilingual benchmark for assessing and debiasing LLM ophthalmological QA in LMICs. AAAI. 2025;39:28321–30.

    Article  Google Scholar 

  64. Tom E, Keane PA, Blazes M, Pasquale LR, Chiang MF, Lee AY, et al. Protecting data privacy in the age of AI-enabled ophthalmology. Transl Vis Sci Technol. 2020;9:36. https://doi.org/10.1167/tvst.9.2.36.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kalaw FGP, Baxter SL. Ethical considerations for large language models in ophthalmology. Curr Opin Ophthalmol. 2024;35:438–46. https://doi.org/10.1097/ICU.0000000000001083.

    Article  PubMed  Google Scholar 

  66. Bernstein IA, Zhang YV, Govil D, Majid I, Chang RT, Sun Y, et al. Comparison of ophthalmologist and large language model chatbot responses to online patient eye care questions. JAMA Netw Open. 2023;6:e2330320. https://doi.org/10.1001/jamanetworkopen.2023.30320.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cohen SA, Brant A, Fisher AC, Pershing S, Do D, Pan C. Dr. Google vs. Dr. ChatGPT: exploring the use of artificial intelligence in ophthalmology by comparing the accuracy, safety, and readability of responses to frequently asked patient questions regarding cataracts and cataract surgery. Semin Ophthalmol. 2024;39:472–9. https://doi.org/10.1080/08820538.2024.2326058.

    Article  PubMed  Google Scholar 

  68. Wilhelm TI, Roos J, Kaczmarczyk R. Large language models for therapy recommendations across 3 clinical specialties: comparative study. J Med Internet Res. 2023;25:e49324. https://doi.org/10.2196/49324.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xue X, Zhang D, Sun C, Shi Y, Wang R, Tan T, et al. Xiaoqing: A Q&A model for glaucoma based on LLMs. Comput Biol Med. 2024;174:108399. https://doi.org/10.1016/j.compbiomed.2024.108399.

    Article  PubMed  Google Scholar 

  70. Biswas S, Logan NS, Davies LN, Sheppard AL, Wolffsohn JS. Assessing the utility of ChatGPT as an artificial intelligence-based large language model for information to answer questions on myopia. Ophthalmic Physiol Opt. 2023;43:1562–70. https://doi.org/10.1111/opo.13207.

    Article  PubMed  Google Scholar 

Download references

Funding

FGPK - National Institutes of Health Bridge2AI (AI-READI Salutogenesis Grand Challenge) Grant OT2OD032644.

Author information

Authors and Affiliations

Authors

Contributions

JCMA, MCBG, GMNS, FGPK - designed the study, acquired, parsed, and interpreted the data, drafted and revised the manuscript, and approved the final version of the manuscript. APA, IDN – designed the study, acquired the data, and approved the final version of the manuscript.

Corresponding author

Correspondence to Fritz Gerald P. Kalaw.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artiaga, J.C.M., Guevarra, M.C.B., Sosuan, G.M.N. et al. Large language models in ophthalmology: a scoping review on their utility for clinicians, researchers, patients, and educators. Eye 39, 2752–2761 (2025). https://doi.org/10.1038/s41433-025-03935-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-03935-7

Search

Quick links