Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Significance of serum biomarkers in preterm infants screened for retinopathy of prematurity: a systematic review and meta-analysis

Abstract

Background/Objectives

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. This systematic review and meta-analysis assess the association between eight serum biomarkers and the presence of ROP in premature neonates. These biomarkers are neutrophil-to-lymphocyte ratio (NLR), C-reactive protein (CRP), red cell distribution width (RDW), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), platelet mass index (PMI), systemic immune-inflammation index (SII), and vitamin D.

Subjects/Methods

A comprehensive literature search was conducted across PubMed, Embase, Scopus, and Cochrane Library for studies published up to February 2025. Eligible studies included quantitative data on serum biomarker levels in premature neonates with and without ROP. A random-effects meta-analysis estimated standardised mean differences (SMDs) and 95% confidence intervals (CIs). Risk of bias was assessed using the Newcastle-Ottawa Scale.

Results

Twenty-one studies comprising 3965 participants were included. Significant associations were found for NLR (SMD = 0.43, 95% CI: 0.16–0.71, P = 0.002), RDW (SMD = 0.41, 95% CI: 0.15–0.67, P = 0.002), and vitamin D (SMD = −1.18, 95% CI: -1.47–-0.90, P < 0.00001). CRP, LMR, PLR, PMI, and SII did not show significant associations with ROP presence.

Conclusions

NLR, RDW, and vitamin D levels are potential biomarkers associated with ROP presence in premature neonates, likely reflecting systemic inflammation and vascular pathology. Further large-scale prospective studies are warranted to establish standardised cutoff values for clinical implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow of study selection.
Fig. 2: Forest plot of meta-analysis.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M, et al. The incidence and course of retinopathy of prematurity: findings from the early treatment for retinopathy of prematurity study. Pediatrics. 2005;116:15–23.

    Article  PubMed  Google Scholar 

  2. Solebo AL, Teoh L, Rahi J. Epidemiology of blindness in children. Arch Dis Child. 2017;102:853–7.

    Article  PubMed  Google Scholar 

  3. Blencowe H, Lawn JE, Vazquez T, Fielder A, Gilbert C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74:35–49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 2012;367:2515–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ramshekar A, Hartnett ME. Vascular endothelial growth factor signaling in models of oxygen-induced retinopathy: insights into mechanisms of pathology in retinopathy of prematurity. Front Pediatr. 2021;9:796143.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, et al. Association between intermittent Hypoxemia or Bradycardia and late death or disability in extremely preterm infants. Jama. 2015;314:595–603.

    Article  PubMed  CAS  Google Scholar 

  7. Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics. 2005;115:990–6.

    Article  PubMed  Google Scholar 

  8. Sabri K, Ells AL, Lee EY, Dutta S, Vinekar A. Retinopathy of Prematurity: A Global Perspective and Recent Developments. Pediatrics. 2022;150.

  9. Chuang SH, Chang CH. Platelet-to-lymphocyte ratio and lymphocyte-to-monocyte ratio in glaucoma: a meta-analysis. Biomark Med. 2024;18:39–49.

    Article  PubMed  CAS  Google Scholar 

  10. Shirvani M, Soufi F, Nouralishahi A, Vakili K, Salimi A, Lucke-Wold B, et al. The diagnostic value of neutrophil to lymphocyte ratio as an effective biomarker for eye disorders: a meta-analysis. Biomed Res Int. 2022;2022:5744008.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Song J, Chen S, Liu X, Duan H, Kong J, Li Z. Relationship between C-reactive protein level and diabetic retinopathy: a systematic review and meta-analysis. PLoS One. 2015;10:e0144406.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mu Y, Wang H. Association of neutrophil to lymphocyte ratio with preterm necrotizing enterocolitis: a retrospective case-control study. BMC Gastroenterol. 2022;22:248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Akdogan M, Ustundag Y, Cevik SG, Dogan P, Dogan N. Correlation between systemic immune-inflammation index and routine hemogram-related inflammatory markers in the prognosis of retinopathy of prematurity. Indian J Ophthalmol. 2021;69:2182–7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bakry HESK, Shahin EMT, Mohamed SA, Eldmery AM, Elgazzar AMF, Elkhrsawy AM, et al. Retinopathy of prematurity and the changes of the red cells distribution width in neonates: a retrospective study. NeuroQuantology. 2022;20:753–60.

    Google Scholar 

  15. Borțea CI, Stoica F, Boia M, Iacob ER, Dinu M, Iacob R, et al. Risk factors associated with retinopathy of prematurity in very and extremely preterm infants. Medicina. 2021;57.

  16. Boskabadi H, Abrishami M, Shoeibi N, Sanei Z, Moradi A, Zakerihamidi M. Comparison of Vitamin D levels in premature infants with and without retinopathy of prematurity. Arch Iran Med. 2022;25:209–13.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Celik K, Ekinci D, Asena M, Matur NO. Can hematological parameters be a indicator risk factor in the development of retinopathy of prematurity?. Klin Padiatr. 2021;233:216–20.

    Article  PubMed  Google Scholar 

  18. Çömez A, Yurttutan S, Seringec Akkececi N, Bozkaya A, Köküsarı G, Evgin İ, et al. Red cell distribution width and its association with retinopathy of prematurity. Int Ophthalmol. 2021;41:699–706.

    Article  PubMed  Google Scholar 

  19. Deger I, Ertuğrul S, Kaya IK, Yılmaz ST, Yolbaş I. Can platelet count, Platelet Mass Index and mean platelet volume be parameters in retinopathy of prematurity?. East J Med. 2022;27:513–8.

    Article  Google Scholar 

  20. Ekinci DY, Bezirganoglu H, Okur N, Tas M. A novel marker for predicting type 1 retinopathy of prematurity: C-reactive protein/albumin ratio. Int Ophthalmol. 2023;43:3345–53.

    Article  PubMed  Google Scholar 

  21. Fevereiro-Martins M, Santos AC, Marques-Neves C, Guimarães H, Bicho M. Complete blood count parameters as biomarkers of retinopathy of prematurity: a Portuguese multicenter study. Graefes Arch Clin Exp Ophthalmol. 2023;261:2997–3006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hu YX, Xu XX, Shao Y, Yuan GL, Mei F, Zhou Q, et al. The prognostic value of lymphocyte-to-monocyte ratio in retinopathy of prematurity. Int J Ophthalmol. 2017;10:1716–21.

    PubMed  PubMed Central  Google Scholar 

  23. Kabataş EU, Dinlen NF, Zenciroğlu A, Dilli D, Beken S, Okumuş N. Relationship between serum 25-hydroxy vitamin D levels and retinopathy of prematurity. Scott Med J. 2017;62:129–35.

    Article  PubMed  Google Scholar 

  24. Kıran Yenice E, Kara C, Karsli Türkoglu T, Ulubaş Işık D, Çelik İH. Predictive value of serum inflammatory markers in retinopathy of prematurity. Eye. 2024;38:2822–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kurtul BE, Kabatas EU, Zenciroglu A, Ozer PA, Ertugrul GT, Beken S, et al. Serum neutrophil-to-lymphocyte ratio in retinopathy of prematurity. J AAPOS. 2015;19:327–31.

    Article  PubMed  Google Scholar 

  26. Maeda H, Go H, Iwasa H, Hiruta S, Ichikawa H, Sugano Y, et al. Red blood cell parameters as biomarkers of retinopathy of prematurity in preterm infants born before 30 weeks of gestation. Sci Rep. 2025;15:264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Modrzejewska M, Bosy-Gąsior W, Grzesiak W Association of Positive Bacterial Cultures Obtained from the Throat, Anus, Ear, Bronchi and Blood in Very-Low-Birth-Weight Premature Infants with Severe Retinopathy of Prematurity—Own Observations. J Clin Med. 2023;12.

  28. Obata S, Matsumoto R, Kakinoki M, Sawada O, Sawada T, Saishin Y, et al. Blood neutrophil-to-lymphocyte ratio as a risk factor in treatment for retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2023;261:951–7.

    Article  PubMed  CAS  Google Scholar 

  29. Okur N, Buyuktiryaki M, Uras N, Oncel MY, Ertekin O, Canpolat FE, et al. Platelet mass index in very preterm infants: can it be used as a parameter for neonatal morbidities?. J Matern Fetal Neonatal Med. 2016;29:3218–22.

    Article  PubMed  Google Scholar 

  30. Oruz O, Dervişoğulları MS, Öktem ME, İncekaş C. Predictive role of systemic immune-inflammation index and neutrophil/lymphocyte ratio values in infants with retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 2024;262:3125–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ozturk T, Durmaz Engin C, Kaya M, Yaman A. Complete blood count parameters to predict retinopathy of prematurity: when to evaluate and what do they tell us?. Int Ophthalmol. 2021;41:2009–18.

    Article  PubMed  Google Scholar 

  32. Ugurlu A, Icel E. Are the neutrophil-to-lymphocyte, platelet-to-lymphocyte and monocyte-to-lymphocyte ratios predictive factors for the retinopathy of prematurity?. Hong Kong J Paediatr. 2022;27:107–12.

    Google Scholar 

  33. Zonda GI, Mogos R, Melinte-Popescu AS, Adam AM, Harabor V, Nemescu D, et al. Hematologic Risk Factors for the Development of Retinopathy of Prematurity—A Retrospective Study. Children. 2023;10.

  34. Ikeda H, Kuriyama S. Risk factors for retinopathy of prematurity requiring photocoagulation. Jpn J Ophthalmol. 2004;48:68–71.

    Article  PubMed  Google Scholar 

  35. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000.

  37. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27:1785–805.

    Article  PubMed  Google Scholar 

  38. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Altman D, Machin D, Bryant T, Gardner M eds 2000: Statistics with confidence, 2nd edn. London: BMJ Books. 240 pp+ diskette,£ 19.95 (PB). Citeseer; 2001.

  40. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111.

    Article  PubMed  Google Scholar 

  41. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Duval S, Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    Article  PubMed  CAS  Google Scholar 

  43. Chiang MF, Quinn GE, Fielder AR, Ostmo SR, Paul Chan RV, Berrocal A, et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology. 2021;128:e51–e68.

    Article  PubMed  Google Scholar 

  44. Hellstrom A, Smith LE, Dammann O. Retinopathy of prematurity. Lancet. 2013;382:1445–57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hellgren G, Lundgren P, Pivodic A, Lofqvist C, Nilsson AK, Ley D, et al. Decreased platelet counts and serum levels of VEGF-A, PDGF-BB, and BDNF in extremely preterm infants developing severe ROP. Neonatology. 2021;118:18–27.

    Article  PubMed  CAS  Google Scholar 

  46. Sood BG, Madan A, Saha S, Schendel D, Thorsen P, Skogstrand K, et al. Perinatal systemic inflammatory response syndrome and retinopathy of prematurity. Pediatr Res. 2010;67:394–400.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Woo SJ, Park KH, Lee SY, Ahn SJ, Ahn J, Park KH, et al. The relationship between cord blood cytokine levels and perinatal factors and retinopathy of prematurity: a gestational age-matched case-control study. Invest Ophthalmol Vis Sci. 2013;54:3434–9.

    Article  PubMed  Google Scholar 

  48. Tremblay S, Miloudi K, Chaychi S, Favret S, Binet F, Polosa A, et al. Systemic inflammation perturbs developmental retinal angiogenesis and neuroretinal function. Invest Ophthalmol Vis Sci. 2013;54:8125–39.

    Article  PubMed  CAS  Google Scholar 

  49. Ozgonul C, Sertoglu E, Gokce G. Accurate use of neutrophil/lymphocyte ratio in patients with keratoconus. Cornea. 2015;34:e4–5.

    Article  PubMed  Google Scholar 

  50. Howard R, Kanetsky PA, Egan KM. Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Sci Rep. 2019;9:19673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Orkin SH, David EF, Nathan DG, Look, AT, Lux SE & Ginsburg D. Nathan and Oski’s hematology of infancy and childhood. 6th, editor: 2003 pp. 2752.

  52. Yektaei-Karin E, Moshfegh A, Lundahl J, Berggren V, Hansson LO, Marchini G. The stress of birth enhances in vitro spontaneous and IL-8-induced neutrophil chemotaxis in the human newborn. Pediatr Allergy Immunol. 2007;18:643–51.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: Shu-Han Chuang, Yen Thi Thao Le, Cheng-Hsien Chang. Data curation: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Yu Zhi Lian. Formal analysis: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Yu Zhi Lian. Investigation: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Cheng-Hsien Chang. Methodology: Cheng-Hsien Chang, Yi-Jie Kuo, Yu-Pin Chen. Software: Yi-Jie Kuo, Yu-Pin Chen. Resources: Cheng-Hsien Chang, Yi-Jie Kuo, Yu-Pin Chen. Supervision: Cheng-Hsien Chang, Yi-Jie Kuo, Yu-Pin Chen. Validation: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Yu Zhi Lian. Visualisation: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Yu Zhi Lian. Writing – original draft: Shu-Han Chuang, Yen Thi Thao Le, Yan-Han Li, Yu Zhi Lian. Writing – review & editing: Cheng-Hsien Chang, Yi-Jie Kuo, Yu-Pin Chen.

Corresponding author

Correspondence to Yu-Pin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The Institutional Review Board Committee of Changhua Christian Hospital in Taiwan granted ethical approval for the execution of this study (IRB number: 240607).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuang, SH., Le, Y.T.T., Li, YH. et al. Significance of serum biomarkers in preterm infants screened for retinopathy of prematurity: a systematic review and meta-analysis. Eye 39, 3167–3175 (2025). https://doi.org/10.1038/s41433-025-04051-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41433-025-04051-2

This article is cited by

Search

Quick links