Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Potential of an anti-bevacizumab idiotype scFv DNA-based immunization to elicit VEGF-binding antibody response

Abstract

Anti-idiotype antibodies have been considered for vaccination approaches against different diseases, including cancers. Based on that, we previously described an anti-bevacizumab idiotype monoclonal antibody, 10.D7, that revealed detectable antitumor effects on a vascular endothelial growth factor (VEGF)-dependent tumor model. Herein, we evaluated the possible applicability of a single-chain variable fragment (scFv) for the 10.D7 antibody in a gene immunization strategy. After checking that mammalian cells transfected to express the 10.D7 scFv are recognized by bevacizumab, it was explored the ability of our scFv construction, in a gene-based scheme, to elicit an immune response containing VEGF-binding antibodies. The results provide evidence that the designed 10.D7 scFv construct maintains the anti-bevacizumab idiotype features and has potential to activate an immune response recognizing VEGF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of a plasmid encoding the 10.D7 scFv.
Fig. 2: Evaluation of the 10.D7 scFv binding and the antitumoral activities of the designed vaccine.

Similar content being viewed by others

Data availability

The data that support the reported results are available from the corresponding authors upon reasonable request.

References

  1. Jerne NK. Towards a network theory of the immune system. Ann Immunol (Paris). 1974;125C:373–89.

    CAS  PubMed  Google Scholar 

  2. Pan SY, Chia YC, Yee HR, Fang Cheng AY, Anjum CE, Kenisi Y, et al. Immunomodulatory potential of anti-idiotypic antibodies for the treatment of autoimmune diseases. Future Sci OA. 2020;7:648. https://doi.org/10.2144/fsoa-2020-0142.

    Article  Google Scholar 

  3. Cowton VM, Owsianka AM, Fadda V, Ortega-Prieto AM, Cole SJ, Potter JA, et al. Development of a structural epitope mimic: an idiotypic approach to HCV vaccine design. NPJ Vaccines. 2021;6:7. https://doi.org/10.1038/s41541-020-00269-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stanova AK, Ryabkova VA, Utekhin SV, Shoenfeld VJ, Churilov LP, Shoenfeld Y. Anti-Idiotypic agonistic antibodies: candidates for the role of universal remedy. Antibodies (Basel). 2020;9:19. https://doi.org/10.3390/antib9020019.

    Article  CAS  PubMed  Google Scholar 

  5. Saha A, Chatterjee SK. Dendritic cells pulsed with an anti-idiotype antibody mimicking Her-2/neu induced protective antitumor immunity in two lines of Her-2/neu transgenic mice. Cell Immunol. 2010;263:9–21. https://doi.org/10.1016/j.cellimm.2010.02.010.

    Article  CAS  PubMed  Google Scholar 

  6. Ladjemi MZ, Chardes T, Corgnac S, Garambois V, Morisseau S, Robert B, et al. Vaccination with human anti-trastuzumab anti-idiotype scFv reverses HER2 immunological tolerance and induces tumor immunity in MMTV.f.huHER2(Fo5) mice. Breast Cancer Res. 2011;13:17. https://doi.org/10.1186/bcr2826.

    Article  Google Scholar 

  7. Kohler H, Pashov A, Kieber-Emmons T. The promise of anti-idiotype revisited. Front Immunol. 2019;10:808. https://doi.org/10.3389/fimmu.2019.00808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ladjemi MZ. Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements. Front Oncol. 2012;2:158. https://doi.org/10.3389/fonc.2012.00158.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ascoli CA, Aggeler B. Overlooked benefits of using polyclonal antibodies. Biotechniques. 2018; https://doi.org/10.2144/btn-2018-0065.

  10. Bemani P, Mohammadi M, Hakakian A. ScFv improvement approaches. Protein Pept Lett. 2018; https://doi.org/10.2174/0929866525666171129225436.

  11. Ye X, Gaucher JF, Vidal M, Broussy S. A structural overview of vascular endothelial growth factors pharmacological ligands: from macromolecules to designed peptidomimetics. Molecules. 2021; https://doi.org/10.3390/molecules26226759.

  12. Garcia J, Hurwitz HI, Sandler AB, Miles D, Coleman RL, Deurloo R, et al. Bevacizumab (Avastin®) in cancer treatment: a review of 15 years of clinical experience and future outlook. Cancer Treat Rev. 2020;86:102017. https://doi.org/10.1016/j.ctrv.2020.102017.

    Article  CAS  PubMed  Google Scholar 

  13. Sanches Jde S, de Aguiar RB, Parise CB, Suzuki JM, Chammas R, de Moraes JZ. Anti-bevacizumab idiotype antibody vaccination is effective in inducing vascular endothelial growth factor-binding response, impairing tumor outgrowth. Cancer Sci. 2016; https://doi.org/10.1111/cas.12903.

  14. Pignatari GC, Takeshita D, Parise CB, Soares FA, de Moraes JZ, Han SW. Carcinoembryonic antigen (CEA) mimicry by an anti-idiotypic scFv isolated from anti-Id 6.C4 hybridoma. J Biotechnol. 2007;127:615–25. https://doi.org/10.1016/j.jbiotec.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  15. de Aguiar RB, da Silva TA, Costa BA, Machado MFM, Yamada RY, Braggion C, et al. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep. 2021; https://doi.org/10.1038/s41598-020-80746-8.

  16. National Research Council, Guide for the Care and Use of Laboratory Animals, 8th ed., Nat Acad Press,Washington (DC), 2011.

  17. Li L, Petrovsky N. Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 2016; https://doi.org/10.1586/14760584.2016.1124762.

  18. Denapoli PMA, Zanetti BF, Dos Santos AA, de Moraes JZ, Han SW. Preventive DNA vaccination against CEA-expressing tumors with anti-idiotypic scFv6.C4 DNA in CEA-expressing transgenic mice. Cancer Immunol Immunother. 2017;66:333–42. https://doi.org/10.1007/s00262-016-1940-4.

    Article  CAS  PubMed  Google Scholar 

  19. de Aguiar RB, Parise CB, Souza CR, Braggion C, Quintilio W, Moro AM, et al. Blocking FGF2 with a new specific monoclonal antibody impairs angiogenesis and experimental metastatic melanoma, suggesting a potential role in adjuvant settings. Cancer Lett. 2016;371:151–60. https://doi.org/10.1016/j.canlet.2015.11.030.

    Article  PubMed  Google Scholar 

  20. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239:62–84. https://doi.org/10.1111/j.1600-065X.2010.00980.x.

    Article  CAS  PubMed  Google Scholar 

  21. Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34:5488–94. https://doi.org/10.1016/j.vaccine.2016.09.062.

    Article  CAS  PubMed  Google Scholar 

  22. Francisco JA, Gilliland LK, Stebbins MR, Norris NA, Ledbetter JA, Siegall CB. Activity of a single-chain immunotoxin that selectively kills lymphoma and other B-lineage cells expressing the CD40 antigen. Cancer Res. 1995;55:3099–104.

    CAS  PubMed  Google Scholar 

  23. Tripathi PK, Qin H, Deng S, Xu C, Bhattacharya-Chatterjee M, Foon KA, et al. Antigen mimicry by an anti-idiotypic antibody single chain variable fragment. Mol Immunol. 1998;35:853–63. https://doi.org/10.1016/s0161-5890(98)00072-8.

    Article  CAS  PubMed  Google Scholar 

  24. Liu A, Ye Y, Chen W, Wang X, Chen F. Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli. J Ind Microbiol Biotechnol. 2015; https://doi.org/10.1007/s10295-014-1570-9.

  25. Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci USA. 1999;96:4262–7. https://doi.org/10.1073/pnas.96.8.4262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parise CB, Lisboa B, Takeshita D, Sacramento CB, de Moraes JZ, Han SW. Humoral immune response after genetic immunization is consistently improved by electroporation. Vaccine. 2008;26:3812–7. https://doi.org/10.1016/j.vaccine.2008.05.029.

    Article  CAS  PubMed  Google Scholar 

  27. Lee YH, Lim H, Lee JA, Kim SH, Hwang YH, In HJ, et al. Optimization of Zika DNA vaccine by delivery systems. Virology. 2021;559:10–14. https://doi.org/10.1016/j.virol.2021.03.005.

    Article  CAS  PubMed  Google Scholar 

  28. Fomsgaard A, Liu MA. The key role of nucleic acid vaccines for one health. Viruses. 2021;13:258. https://doi.org/10.3390/v13020258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coelho M, Gauthier P, Pugnière M, Roquet F, Pèlegrin A, Navarro-Teulon I. Isolation and characterisation of a human anti-idiotypic scFv used as a surrogate tumour antigen to elicit an anti-HER-2/neu humoral response in mice. Br J Cancer. 2004;90:2032–41. https://doi.org/10.1038/sj.bjc.6601825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ghosh S, Maity P. Augmented antitumor effects of combination therapy with VEGF antibody and cisplatin on murine B16F10 melanoma cells. Int Immunopharmacol. 2007;7:1598–608. https://doi.org/10.1016/j.intimp.2007.08.017.

    Article  CAS  PubMed  Google Scholar 

  31. Grimmett E, Al-Share B, Alkassab MB, Zhou RW, Desai A, Rahim MMA, et al. Cancer vaccines: past, present and future; a review article. Discov Oncol. 2022;13:31 https://doi.org/10.1007/s12672-022-00491-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inogès S, Rodrìguez-Calvillo M, Zabalegui N, Lòpez-Dìaz de Cerio A, Villanueva H, Soria E, et al. Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J Natl Cancer Inst. 2006;98:1292–301. https://doi.org/10.1093/jnci/djj358.

    Article  PubMed  Google Scholar 

  33. Schuster SJ, Neelapu SS, Gause BL, Janik JE, Muggia FM, Gockerman JP, et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J Clin Oncol. 2011;29:2787–94. https://doi.org/10.1200/JCO.2010.33.3005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meleshko AN, Petrovskaya NA, Savelyeva N, Vashkevich KP, Doronina SN, Sachivko NV. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Hum Vaccin Immunother. 2017;13:1–6. https://doi.org/10.1080/21645515.2017.1285477.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by São Paulo Research Foundation (FAPESP; Grant Number 16/14358-2), and the Brazilian National Research Council (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

RBA and JZM conceived the experiments. TAS and GEM performed the assays. BH offered technical support. MM and MFMM contributed to scFv construction. All authors analyzed the results. RBA and JZM wrote and revised the manuscript.

Corresponding authors

Correspondence to Rodrigo Barbosa Aguiar or Jane Zveiter Moraes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Animal procedures were approved by the ethics committee (CEUA) of the “Universidade Federal de São Paulo” (Protocol no. 6710130416).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.A., Aguiar, R.B., Mori, M. et al. Potential of an anti-bevacizumab idiotype scFv DNA-based immunization to elicit VEGF-binding antibody response. Gene Ther 30, 598–602 (2023). https://doi.org/10.1038/s41434-022-00376-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41434-022-00376-9

Search

Quick links