Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid nanoparticle mediated base editing of the Q344X rhodopsin mutation associated with retinitis pigmentosa

Abstract

Retinitis pigmentosa (RP) associated with mutations in the rhodopsin gene (RHO) is a significant cause of blindness. Here we report on the application of adenine base editing of the c.1030C>T (p.Q344X) RHO mutation linked to RP. Using a fluorescence reporter cell system, we optimized editing by exploring base editors, sgRNA, and delivery methods. Flow cytometry, western blotting, and immunofluorescence microscopy confirmed the restoration of full-length rhodopsin after editing. DNA sequencing verified editing at the target nucleotide and the absence of bystander edits within the editing window. Polyethylenimine cationic polymer transfection of cells with a plasmid containing the NG-ABE8e adenine base editor and A6 guide RNA that placed the targeted adenine in position 6 of the editing window resulted in 31.0% gDNA sequence correction and 26.3% rhodopsin protein correction as determined by flow cytometry. Purified NG-ABE8e protein complexed with A6-sgRNA showed 32.2% gDNA editing and 44.5% rhodopsin correction. Plasmid NG-ABE8e and A6-sgRNA co-encapsulated into lipid nanoparticles (LNPs) and transfected into the reporter cell system resulted in the highest editing (42.6% gDNA editing and 65.9% rhodopsin correction). These results demonstrate the successful correction of the c.1030C>T RHO mutation and provide the foundation for base editing as a treatment for RP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Validation of Rho-EGFP and Rho-Q344X-EGFP stable cell lines.
Fig. 2: Base editor selection and sgRNA design for the Rho-Q344X-EGFP mutant.
Fig. 3: Editing of the Rho-Q344X mutation using PEI to transfect plasmid base editors.
Fig. 4: Editing of the Rho-Q344X mutation using plasmid ABE encapsulated in LNPs.
Fig. 5: Editing of Rho-Q344X mutation using Ribonucleoprotein (RNP).

Similar content being viewed by others

Data availability

All the data produced in this study have been either included in the published paper or are accessible through the lead contact upon request.

References

  1. Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci USA. 2020;117:2710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9.

    Article  CAS  PubMed  Google Scholar 

  5. Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc. 2021;16:1089–128.

    Article  CAS  PubMed  Google Scholar 

  6. Choi EH, Suh S, Foik AT, Leinonen H, Newby GA, Gao XD, et al. In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nat Commun. 2022;13:1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muller A, Sullivan J, Schwarzer W, Wang M, Park-Windhol C, Hasler PW, et al. High-efficiency base editing in the retina in primates and human tissues. Nat Med. 2025;31:490–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Su J, She K, Song L, Jin X, Li R, Zhao Q, et al. In vivo base editing rescues photoreceptors in a mouse model of retinitis pigmentosa. Mol Ther Nucleic Acids. 2023;31:596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:44–57.

    Article  CAS  PubMed  Google Scholar 

  10. Chambers CZ, Soo GL, Engel AL, Glass IA, Birth Defects Research L, Frassetto A, et al. Lipid nanoparticle-mediated delivery of mRNA into the mouse and human retina and other ocular tissues. Transl Vis Sci Technol. 2024;13:7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gautam M, Jozic A, Su GL, Herrera-Barrera M, Curtis A, Arrizabalaga S, et al. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat Commun. 2023;14:6468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, et al. Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv. 2023;9:eadd4623.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eygeris Y, Henderson MI, Curtis AG, Jozic A, Stoddard J, Reynaga R, et al. Preformed vesicle approach to LNP manufacturing enhances retinal mRNA delivery. Small. 2024;20:e2400815.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res. 2023;93:101116.

    Article  CAS  PubMed  Google Scholar 

  15. Molday RS, Moritz OL. Photoreceptors at a glance. J Cell Sci. 2015;128:4039–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sung CH, Makino C, Baylor D, Nathans J. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci. 1994;14:5818–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Concepcion F, Chen J. Q344ter mutation causes mislocalization of rhodopsin molecules that are catalytically active: a mouse model of Q344ter-induced retinal degeneration. PLoS One. 2010;5:e10904.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, et al. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J. 2024;38:e23606.

    Article  CAS  PubMed  Google Scholar 

  19. Du SW, Newby GA, Salom D, Gao F, Menezes CR, Suh S, et al. In vivo photoreceptor base editing ameliorates rhodopsin-E150K autosomal-recessive retinitis pigmentosa in mice. Proc Natl Acad Sci USA. 2024;121:e2416827121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaukonen M, McClements ME, MacLaren RE. CRISPR DNA base editing strategies for treating retinitis pigmentosa caused by mutations in rhodopsin. Genes. 2022;13:1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi H, Andersen JP, Molday RS. Expression and functional characterization of missense mutations in ATP8A2 linked to severe neurological disorders. Hum Mutat. 2019;40:2353–64.

    Article  CAS  PubMed  Google Scholar 

  22. Garces F, Jiang K, Molday LL, Stohr H, Weber BH, Lyons CJ, et al. Correlating the expression and functional activity of ABCA4 disease variants with the phenotype of patients with Stargardt disease. Invest Ophthalmol Vis Sci. 2018;59:2305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37:224–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kulkarni JA, Witzigmann D, Leung J, van der Meel R, Zaifman J, Darjuan MM, et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale. 2019;11:9023–31.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng MHY, Leung J, Zhang Y, Strong C, Basha G, Momeni A, et al. Induction of Bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency. Adv Mater. 2023;35:e2303370.

    Article  PubMed  Google Scholar 

  26. Mayuranathan T, Newby GA, Feng R, Yao Y, Mayberry KD, Lazzarotto CR, et al. Potent and uniform fetal hemoglobin induction via base editing. Nat Genet. 2023;55:1210–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Molday RS. Monoclonal antibodies to rhodopsin and other proteins of rod outer segments. Prog Retinal Res. 1988;8:173–209.

    Article  CAS  Google Scholar 

  28. Doi T, Molday RS, Khorana HG. Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci USA. 1990;87:4991–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114:100–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jain S, Kumar S, Agrawal AK, Thanki K, Banerjee UC. Enhanced transfection efficiency and reduced cytotoxicity of novel lipid-polymer hybrid nanoplexes. Mol Pharm. 2013;10:2416–25.

    Article  CAS  PubMed  Google Scholar 

  31. Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov. 2024;23:709–22.

    Article  CAS  PubMed  Google Scholar 

  32. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    Article  CAS  PubMed  Google Scholar 

  33. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen L, Zhang S, Xue N, Hong M, Zhang X, Zhang D, et al. Engineering a precise adenine base editor with minimal bystander editing. Nat Chem Biol. 2023;19:101–10.

    Article  CAS  PubMed  Google Scholar 

  36. Tu T, Song Z, Liu X, Wang S, He X, Xi H, et al. A precise and efficient adenine base editor. Mol Ther. 2022;30:2933–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin Y, Wagner E, Lachelt U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci. 2022;10:1166–92.

    Article  CAS  PubMed  Google Scholar 

  39. Kafetzis KN, Papalamprou N, McNulty E, Thong KX, Sato Y, Mironov A, et al. The effect of cryoprotectants and storage conditions on the transfection efficiency, stability, and safety of lipid-based nanoparticles for mRNA and DNA delivery. Adv Health Mater. 2023;12:e2203022.

    Article  Google Scholar 

  40. Quagliarini E, Wang J, Renzi S, Cui L, Digiacomo L, Ferri G, et al. Mechanistic insights into the superior DNA delivery efficiency of multicomponent lipid nanoparticles: an in vitro and in vivo study. ACS Appl Mater Interfaces. 2022;14:56666–77.

    Article  CAS  PubMed  Google Scholar 

  41. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89:113–25.

    Article  CAS  PubMed  Google Scholar 

  42. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK, et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28:172–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wen Y, Pan S, Luo X, Zhang X, Zhang W, Feng M. A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjug Chem. 2009;20:322–32.

    Article  CAS  PubMed  Google Scholar 

  44. Ono R, Yasuhiko Y, Aisaki KI, Kitajima S, Kanno J, Hirabayashi Y. Exosome-mediated horizontal gene transfer occurs in double-strand break repair during genome editing. Commun Biol. 2019;2:57.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Holubowicz R, Du SW, Felgner J, Smidak R, Choi EH, Palczewska G, et al. Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipid-nanoparticle formulations. Nat Biomed Eng. 2025;9:57–78.

    Article  CAS  PubMed  Google Scholar 

  46. Im SH, Jang M, Park JH, Chung HJ. Finely tuned ionizable lipid nanoparticles for CRISPR/Cas9 ribonucleoprotein delivery and gene editing. J Nanobiotechnol. 2024;22:175.

    Article  CAS  Google Scholar 

  47. Walther J, Porenta D, Wilbie D, Seinen C, Benne N, Yang Q, et al. Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. Eur J Pharm Biopharm. 2024;196:114207.

    Article  CAS  PubMed  Google Scholar 

  48. Pulman J, Botto C, Malki H, Ren D, Oudin P, De Cian A, et al. Direct delivery of Cas9 or base editor protein and guide RNA complex enables genome editing in the retina. Mol Ther Nucleic Acids. 2024;35:102349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghoraba HH, Akhavanrezayat A, Karaca I, Yavari N, Lajevardi S, Hwang J, et al. Ocular gene therapy: a literature review with special focus on immune and inflammatory responses. Clin Ophthalmol. 2022;16:1753–71.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 2018;62:1–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jonathen Yen for the NG-ABE8e ribonucleoprotein expression plasmid and Dr. Orson Moritz for the murine rhodopsin cDNA. Ryan Zhu assisted in RNP purification. Cryo-TEM data was collected at the High-Resolution Macromolecular Electron Microscopy (HRMEM) facility at UBC supported by the Canadian Foundation of Innovation and the British Columbia Knowledge Development Fund.

Funding

This study was supported by the Canadian Institutes of Health Research (CIHR) grant 175118 and an unrestricted UBC research grant to RSM and CIHR grant 148469 to PRC. MHYC was supported by the NanoMedicines Innovation Network postdoctoral fellowship in gene therapy and the CIHR Research Excellence, Diversity, and Independence (REDI) Early Career Transition Award. Y.Z. (FBD 193487) and JL was supported by a Frederick Banting and Charles Best Canada Graduate Scholarships Doctoral Award. VACP, YZ, and TM were awarded NanoMedicines Innovation Network (NMIN) graduate awards.

Author information

Authors and Affiliations

Authors

Contributions

RSM and VACP conceived the overall project. VACP, MHYC, YZ, TC, TM, JL designed the experiments, acquired the data and along with RSM, CJDR, and PRC analyzed and interpreted the data. RSM, CJDR and PRC supervised the study and provided resources. VACP and RSM wrote the original draft of the manuscript. All authors reviewed, edited and approved the manuscript.

Corresponding author

Correspondence to Robert S. Molday.

Ethics declarations

Competing interests

PRC has financial interests in Acuitas Therapeutics, Mesentech, and NanoVation Therapeutics. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmgren, V.A.C., Cheng, M.H.Y., Zhang, Y. et al. Lipid nanoparticle mediated base editing of the Q344X rhodopsin mutation associated with retinitis pigmentosa. Gene Ther (2025). https://doi.org/10.1038/s41434-025-00584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41434-025-00584-z

Search

Quick links