Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multi-omics clustering analysis carries out the molecular-specific subtypes of thyroid carcinoma: implicating for the precise treatment strategies

Abstract

Thyroid cancer (TC) is the most prevalent endocrine malignancy worldwide. This study aimed to explore the molecular subtypes and improve the selection of targeted therapies. We used multi-omics data from 539 patients with DNA methylation, gene mutations, mRNA, lncRNA, and miRNA expressions. This study employed consensus clustering algorithms to identify molecular subtypes and used various bioinformatics tools to analyze genetic alterations, signaling pathways, immune infiltration, and responses to chemotherapy and immunotherapy. Two prognostically relevant TC subtypes, CS1 and CS2, were identified. CS2 was associated with a poorer prognosis of shorter progression-free survival times (P < 0.001). CS1 exhibited higher copy number alterations but a lower tumor mutation burden than CS2. CS2 exhibited activation in cell proliferation and immune-related pathways. Drug sensitivity analysis indicated CS2’s higher sensitivity to cisplatin, doxorubicin, paclitaxel, and sunitinib, whereas CS1 was more sensitive to bicalutamide and FH535. The different activated pathways and sensitivity to drugs for the subtypes were further validated in an external cohort. Twenty-four paired tumors and adjacent normal tissues by immunohistochemical staining further demonstrated the prognostic value of CXCL17. In conclusion, we identified two distinct molecular subtypes of TC with significant implications for prognosis, genetic alterations, pathway activation, and treatment response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recognition of multi-omics subtypes based on multi-omics data.
Fig. 2: Distinct genetic alterations among multi-omics subtypes.
Fig. 3: Different molecular features and prediction of chemotherapy response.
Fig. 4: Different immunocyte infiltration, sensitivity to immunotherapy, and regulons among multi-omics subtypes and the connections between multi-omics classification and BRAFV600E- RAS classification.
Fig. 5: Different activated signaling pathways among multi-omics subtypes and response to chemotherapy in the GEO-combined cohort.
Fig. 6: CS1 and CS2 subtypes exhibited distinct immunocyte infiltration landscapes and different responses to immunotherapy.
Fig. 7: Dimensionality reduction and molecular typing validation for thyroid carcinoma.
Fig. 8: Clinical validation of CXCL17 expression in thyroid carcinoma.

Similar content being viewed by others

Data availability

All data used in this work can be acquired from the GDC portal (https://portal.gdc.cancer.gov/), Gene-Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/).

Code availability

The code generated during the current study are available from the corresponding author on reasonable request.

References

  1. Pstrag N, Ziemnicka K, Bluyssen H, Wesoly J. Thyroid cancers of follicular origin in a genomic light: in-depth overview of common and unique molecular marker candidates. Mol Cancer. 2018;17:116.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  3. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135:584–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferrari SM, Fallahi P, Ruffilli I, Elia G, Ragusa F, Paparo SR, et al. Molecular testing in the diagnosis of differentiated thyroid carcinomas. Gland Surg. 2018;7:S19–S29.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schlumberger M, Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrinol. 2021;17:176–88.

    Article  CAS  PubMed  Google Scholar 

  6. Carling T, Udelsman R. Thyroid cancer. Annu Rev Med. 2014;65:125–37.

    Article  CAS  PubMed  Google Scholar 

  7. Rossi L, Materazzi G, Bakkar S, Miccoli P. Recent Trends in Surgical Approach to Thyroid Cancer. Front Endocrinol (Lausanne). 2021;12:699805.

    Article  PubMed  Google Scholar 

  8. Raue F, Frank-Raue K. Thyroid Cancer: Risk-Stratified Management and Individualized Therapy. Clin Cancer Res. 2016;22:5012–21.

    Article  CAS  PubMed  Google Scholar 

  9. Ibrahimpasic T, Ghossein R, Shah JP, Ganly I. Poorly Differentiated Carcinoma of the Thyroid Gland: Current Status and Future Prospects. Thyroid. 2019;29:311–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giannini R, Moretti S, Ugolini C, Macerola E, Menicali E, Nucci N, et al. Immune Profiling of Thyroid Carcinomas Suggests the Existence of Two Major Phenotypes: An ATC-Like and a PDTC-Like. J Clin Endocrinol Metab. 2019;104:3557–75.

    PubMed  Google Scholar 

  11. Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol. 2022;33:27–63.

    Article  PubMed  Google Scholar 

  12. Pu W, Shi X, Yu P, Zhang M, Liu Z, Tan L, et al. Single-cell transcriptomic analysis of the tumor ecosystems underlying initiation and progression of papillary thyroid carcinoma. Nat Commun. 2021;12:6058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fallahi P, Ferrari SM, Galdiero MR, Varricchi G, Elia G, Ragusa F, et al. Molecular targets of tyrosine kinase inhibitors in thyroid cancer. Semin Cancer Biol. 2022;79:180–96.

    Article  CAS  PubMed  Google Scholar 

  14. Brose MS, Cabanillas ME, Cohen EE, Wirth LJ, Riehl T, Yue H, et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:1272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suzuki C, Kiyota N, Imamura Y, Goto H, Suto H, Chayahara N, et al. Exploratory analysis of prognostic factors for lenvatinib in radioiodine-refractory differentiated thyroid cancer. Head Neck. 2019;41:3023–32.

    Article  PubMed  Google Scholar 

  16. Shi L, You Q, Wang J, Wang H, Li S, Tian R, et al. Antitumour effects of apatinib in progressive, metastatic differentiated thyroid cancer (DTC). Endocrine. 2022;78:68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrari SM, Centanni M, Virili C, Miccoli M, Ferrari P, Ruffilli I, et al. Sunitinib in the Treatment of Thyroid Cancer. Curr Med Chem. 2019;26:963–72.

    Article  CAS  PubMed  Google Scholar 

  18. Kollipara R, Schneider B, Radovich M, Babu S, Kiel PJ. Exceptional Response with Immunotherapy in a Patient with Anaplastic Thyroid Cancer. Oncologist. 2017;22:1149–51.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Iyer PC, Dadu R, Gule-Monroe M, Busaidy NL, Ferrarotto R, Habra MA, et al. Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 2018;6:68.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Even C, Wang HM, Li SH, Ngan RK, Dechaphunkul A, Zhang L, et al. Phase II, Randomized Study of Spartalizumab (PDR001), an Anti-PD-1 Antibody, versus Chemotherapy in Patients with Recurrent/Metastatic Nasopharyngeal Cancer. Clin Cancer Res. 2021;27:6413–23.

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, Wang Z, Wang Q, Chen K, Han Q, Bai S, et al. Molecular classification reveals the diverse genetic and prognostic features of gastric cancer: A multi-omics consensus ensemble clustering. Biomed Pharmacother. 2021;144:112222.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Chen TY, Yang ZY, Fang W, Wu Q, Zhang C. Identification of hub genes in papillary thyroid carcinoma: robust rank aggregation and weighted gene co-expression network analysis. J Transl Med. 2020;18:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tomás G, Tarabichi M, Gacquer D, Hébrant A, Dom G, Dumont JE, et al. A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic. Oncogene. 2012;31:4490–8.

    Article  PubMed  Google Scholar 

  24. Schulten HJ, Al-Mansouri Z, Baghallab I, Bagatian N, Subhi O, Karim S, et al. Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid. BMC Genomics. 2015;16:S7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Z, Yang K, Zhang L, Wei C, Yang P, Xu W. Classification of Thyroid Nodules with Stacked Denoising Sparse Autoencoder. Int J Endocrinol. 2020;2020:9015713.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu X, Meng J, Zhou Y, Jiang L, Yan F. MOVICS: an R package for multi-omics integration and visualization in cancer subtyping. Bioinformatics. 2021:36:5539–41.

  27. Chalise P, Fridley BL. Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm. PloS one. 2017;12:e0176278.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hastie T, Tibshirani R, Walther G. Estimating the number of data clusters via the Gap statistic. J Roy Stat Soc B. 2001;63:411–23.

    Article  Google Scholar 

  29. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng J, Lu X, Zhou Y, Zhang M, Ge Q, Zhou J, et al. Tumor immune microenvironment-based classifications of bladder cancer for enhancing the response rate of immunotherapy. Mol Ther Oncolytics. 2021;20:410–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robertson AG, Kim J, Alahmadie H, Bellmunt J, Guo G, Cherniack AD, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2017;171:540–556.e25.

  32. Audia JE, Campbell RM. Histone Modifications and Cancer. Cold Spring Harb Perspect Biol. 2016;8:a019521.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meng J, Lu X, Jin C, Zhou Y, Ge Q, Zhou J, et al. Integrated multi-omics data reveals the molecular subtypes and guides the androgen receptor signalling inhibitor treatment of prostate cancer. Clin Transl Med. 2021;11:e655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

  35. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discov. 2016;6:827–37.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping: identifying common subtypes in independent disease data sets. PloS One. 2007;2:e1195.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoshida Y. Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment. PloS one. 2010;5:e15543.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18:128.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hu Q, Nonaka K, Wakiyama H, Miyashita Y, Fujimoto Y, Jogo T, et al. Cytolytic activity score as a biomarker for antitumor immunity and clinical outcome in patients with gastric cancer. Cancer Med. 2021;10:3129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takahashi H, Kawaguchi T, Yan L, Peng X, Qi Q, Morris LGT, et al. Immune Cytolytic Activity for Comprehensive Understanding of Immune Landscape in Hepatocellular Carcinoma. Cancers. 2020;12:1221.

  41. Garcia-Alonso L, Holland CH, Ibrahim MM, Turei D, Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2019;29:1363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

  43. Liu B, Hu X, Feng K, Gao R, Xue Z, Zhang S, et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat Cancer. 2022;3:108–21.

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez-Verdin I, Kirasic E, Wienand K, Mokhtari K, Eimer S, Loiseau H, et al. Molecular and clinical diversity in primary central nervous system lymphoma. Ann Oncol. 2023;34:186–99.

    Article  CAS  PubMed  Google Scholar 

  45. He Y, Duan S, Wang W, Yang H, Pan S, Cheng W, et al. Integrative radiomics clustering analysis to decipher breast cancer heterogeneity and prognostic indicators through multiparametric MRI. NPJ Breast Cancer. 2024;10:72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ma Y, Li J, Zhao X, Ji C, Hu W, Ma Y, et al. Multi-omics cluster defines the subtypes of CRC with distinct prognosis and tumor microenvironment. Eur J Med Res. 2024;29:207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Z, Chen JQ, Liu JL, Qin XG. Clinical impact of BRAF mutation on the diagnosis and prognosis of papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Clin Invest. 2016;46:146–57.

    Article  CAS  PubMed  Google Scholar 

  48. Cong R, Ouyang H, Zhou D, Li X, Xia F. BRAF V600E mutation in thyroid carcinoma: a large-scale study in Han Chinese population. World J Surg Oncol. 2024;22:259.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sharma NS, Gupta VK, Garrido VT, Hadad R, Durden BC, Kesh K, et al. Targeting tumor-intrinsic hexosamine biosynthesis sensitizes pancreatic cancer to anti-PD1 therapy. J Clin Invest. 2020;130:451–65.

    Article  CAS  PubMed  Google Scholar 

  50. McGregor BA, McKay RR, Braun DA, Werner L, Gray K, Flaifel A, et al. Results of a Multicenter Phase II Study of Atezolizumab and Bevacizumab for Patients With Metastatic Renal Cell Carcinoma With Variant Histology and/or Sarcomatoid Features. J Clin Oncol. 2020;38:63–70.

    Article  CAS  PubMed  Google Scholar 

  51. Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Frates MC, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules. BMC Med. 2015;13:184.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Miller KA, Yeager N, Baker K, Liao XH, Refetoff S, Di Cristofano A. Oncogenic Kras requires simultaneous PI3K signaling to induce ERK activation and transform thyroid epithelial cells in vivo. Cancer Res. 2009;69:3689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang L, Han L, He J, Lv J, Pan R, Lv T. A high serum-free fatty acid level is associated with cancer. J Cancer Res Clin Oncol. 2020;146:705–10.

    Article  CAS  PubMed  Google Scholar 

  54. Byon CH, Hardy RW, Ren C, Ponnazhagan S, Welch DR, McDonald JM, et al. Free fatty acids enhance breast cancer cell migration through plasminogen activator inhibitor-1 and SMAD4. Lab Invest. 2009;89:1221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appropriate for the developers of the R package “MOVICS”.

Funding

This work was supported by the Research Fund of the Anhui Institute of Translational Medicine (2021zhyx-C30).

Author information

Authors and Affiliations

Contributions

Conception and Design: Zhenglin Wang, and Wei Chen. Collection and Assembly of Data: Xianyu Hu, Qijun Han and Xu Wang. Data Analysis and Interpretation: Zhenglin Wang, Xianyu Hu, Xu Wang and Rui Sun. Manuscript Writing: Zhenglin Wang, Xianyu Hu, Siwei Huang and Wei Chen. Final Approval of Manuscript: All the authors.

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Competing interests

The authors have declare no competing interests.

Ethics approval and consent to participate

The current study was approved by Ethics Committee of The First Affiliated Hospital of Anhui Medical University (Quick-PJ2024-03-41). The samples included in our study were surgically removed tissues from patients, and our study was conducted as a retrospective analysis. Since this research did not influence clinical diagnosis or treatment, the ethics committee determined that participant consent could be waived under these circumstances.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Han, Q., Hu, X. et al. Multi-omics clustering analysis carries out the molecular-specific subtypes of thyroid carcinoma: implicating for the precise treatment strategies. Genes Immun 26, 137–150 (2025). https://doi.org/10.1038/s41435-025-00322-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41435-025-00322-w

Search

Quick links