Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of B cell immunity in lung adenocarcinoma

Abstract

Lung cancer is the deadliest cancer globally. Non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, constitutes a significant portion of cases. Adenocarcinoma, the most prevalent type, has seen a rising incidence. Immune checkpoint inhibitors (ICIs) have improved outcomes in lung adenocarcinoma (LUAD), yet response rates remain unsatisfactory. PD-1/PD-L1 inhibitors are primary ICIs for LUAD, targeting the PD-1/PD-L1 pathway between CD8+ T cells and tumor cells. However, LUAD presents a “cold tumor” phenotype with fewer CD8+ T cells and lower PD-1 expression, leading to resistance to ICIs. Thus, understanding the function of other immune cell in tumor microenvironment is crucial for developing novel immunotherapies for LUAD. B cells, which is part of the adaptive immune system, have gained attention for its role in cancer immunology. While research on B cells lags behind T cells, recent studies reveal their close correlation with prognosis and immunotherapy effectiveness in various solid tumors, including lung cancer. B cells show higher abundance, activity, and prognostic significance in LUAD than that in LUSC. This review summarizes the difference of B cell immunity between LUAD and other lung cancers, outlines the role of B cell immunity in LUAD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interaction between B cells and tumor cell in LUAD.
Fig. 2: The potential molecular regulating B cell immunity in LUAD.
Fig. 3: The communication between B cells and T cells in LUAD.

Similar content being viewed by others

References

  1. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74:12–49.

    Article  PubMed  Google Scholar 

  2. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol. 2022;17:362–87.

    Article  PubMed  Google Scholar 

  3. Ma W, Xue R, Zhu Z, Farrukh H, Song W, Li T, et al. Increasing cure rates of solid tumors by immune checkpoint inhibitors. Exp Hematol Oncol. 2023;12:10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ackermann CJ, Adderley H, Ortega-Franco A, Khan A, Reck M, Califano R. First-line immune checkpoint inhibition for advanced non-small-cell lung cancer: state of the art and future directions. Drugs. 2020;80:1783–97.

    Article  PubMed  Google Scholar 

  5. Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med. 2021;10:3–14.

    Article  CAS  PubMed  Google Scholar 

  6. Lizotte PH, Ivanova EV, Awad MM, Jones RE, Keogh L, Liu H, et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight. 2016;1:e89014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Peng H, Wu X, Liu S, He M, Xie C, Zhong R, et al. Multiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment. Clin Transl Med. 2023;13:e1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021;226:108707.

    Article  CAS  PubMed  Google Scholar 

  9. Naderi W, Schreiner D, King CG. T-cell-B-cell collaboration in the lung. Curr Opin Immunol. 2023;81:102284.

    Article  CAS  PubMed  Google Scholar 

  10. Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 2020;577:561–5.

    Article  CAS  PubMed  Google Scholar 

  11. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 2020;577:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petitprez F, de Reyniès A, Keung EZ, Chen TW, Sun CM, Calderaro J, et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature. 2020;577:556–60.

    Article  CAS  PubMed  Google Scholar 

  13. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, et al. Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res. 2017;5:898–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelletier MP, Edwardes MD, Michel RP, Halwani F, Morin JE. Prognostic markers in resectable non-small cell lung cancer: a multivariate analysis. Can J Surg. 2001;44:180–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Tan Y, Sun F, Hou L, Zhang C, Ge T, et al. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. Genome Biol. 2020;21:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel AJ, Khan N, Richter A, Naidu B, Drayson MT, Middleton GW. Deep immune B and plasma cell repertoire in non-small cell lung cancer. Front Immunol. 2023;14:1198665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Megha KB, Mohanan PV. Role of immunoglobulin and antibodies in disease management. Int J Biol Macromol. 2021;169:28–38.

    Article  CAS  PubMed  Google Scholar 

  18. Klotz M, Blaes F, Funke D, Kalweit G, Schimrigk K, Huwer H. Shift in the IgG subclass distribution in patients with lung cancer. Lung Cancer. 1999;24:25–30.

    Article  CAS  PubMed  Google Scholar 

  19. Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Kobayashi M, Koyanagi I, et al. Stromal plasma cells expressing immunoglobulin G4 subclass in non-small cell lung cancer. Hum Pathol. 2013;44:1569–76.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Shang X, Li J, Zhang S. The prognosis and immune checkpoint blockade efficacy prediction of tumor-infiltrating immune cells in lung cancer. Front Cell Dev Biol. 2021;9:707143.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen F, Yang Y, Zhao Y, Pei L, Yan H. Immune infiltration profiling in nonsmall cell lung cancer and their clinical significance: study based on gene expression measurements. DNA Cell Biol. 2019;38:1387–401.

    Article  CAS  PubMed  Google Scholar 

  22. Backman M, La Fleur L, Kurppa P, Djureinovic D, Elfving H, Brunnström H, et al. Infiltration of NK and plasma cells is associated with a distinct immune subset in non-small cell lung cancer. J Pathol. 2021;255:243–56.

    Article  CAS  PubMed  Google Scholar 

  23. Schumacher TN, Thommen DS. Tertiary lymphoid structures in cancer. Science. 2022;375:eabf9419.

    Article  CAS  PubMed  Google Scholar 

  24. He M, He Q, Cai X, Liu J, Deng H, Li F, et al. Intratumoral tertiary lymphoid structure (TLS) maturation is influenced by draining lymph nodes of lung cancer. J Immunother Cancer. 2023;11:e005539.

  25. Hao D, Han G, Sinjab A, Gomez-Bolanos LI, Lazcano R, Serrano A et al. Gene landscape and correlation between B-cell infiltration and programmed death ligand 1 expression in lung adenocarcinoma patients from The Cancer Genome Atlas data set. PLoS ONE. 2018;13:e0208459

    Article  Google Scholar 

  26. Hao, Han D, Sinjab G, Gomez-Bolanos LI A, Lazcano R, Serrano A, et al. The single-cell immunogenomic landscape of B and plasma cells in early-stage lung adenocarcinoma. Cancer Discov. 2022;12:2626–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu W, You W, Lan Z, Ren Y, Gao S, Li S, et al. An immune cell map of human lung adenocarcinoma development reveals an anti-tumoral role of the Tfh-dependent tertiary lymphoid structure. Cell Rep Med. 2024;5:101448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Hu D, Fang P, Qi M, Sun G. Deciphering key roles of B cells in prognostication and tailored therapeutic strategies for lung adenocarcinoma: a multi-omics and machine learning approach towards predictive, preventive, and personalized treatment strategies. EPMA J. 2025;16:127–63.

    Article  PubMed  Google Scholar 

  29. Osmani L, Askin F, Gabrielson E, Li QK. Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol. 2018;52:103–9.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu H, Chen P, Dong G, Meng F, Xia Z, You J, et al. Correlation between immune microenvironment features and EGFR mutation status in lung adenocarcinoma. Zhongguo Fei Ai Za Zhi. 2023;26:204–16.

    PubMed  PubMed Central  Google Scholar 

  31. Yang L, He YT, Dong S, Wei XW, Chen ZH, Zhang B. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J Immunother Cancer. 2022;10:e003534.

  32. Wang C, Yin R, Dai J, Gu Y, Cui S, Ma H, et al. Whole-genome sequencing reveals genomic signatures associated with the inflammatory microenvironments in Chinese NSCLC patients. Nat Commun. 2018;9:2054.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M, et al. Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immunother Cancer. 2019;7:279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peng X, Xia Z, Guo Y, Li Y. Immune landscape and prognostic immune-related signature in KRAS-mutated lung adenocarcinoma. Aging. 2023;15:4889–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pinto R, Petriella D, Lacalamita R, Montrone M, Catino A, Pizzutilo P, et al. KRAS-driven lung adenocarcinoma and B cell infiltration: novel insights for immunotherapy. Cancers. 2019;11:1145.

  36. Wang H, Guo J, Shang X, Wang Z. Less immune cell infiltration and worse prognosis after immunotherapy for patients with lung adenocarcinoma who harbored STK11 mutation. Int Immunopharmacol. 2020;84:106574.

    Article  CAS  PubMed  Google Scholar 

  37. Hwang JK, Page BJ, Flynn D, Passmore L, McCaul E, Brady J, et al. Validation of the eighth edition TNM lung cancer staging system. J Thorac Oncol. 2020;15:649–54.

    Article  PubMed  Google Scholar 

  38. Hu C, Shu L, Chen C, Fan S, Liang Q, Zheng H, et al. A prediction model integrated genomic alterations and immune signatures of tumor immune microenvironment for early recurrence of stage I NSCLC after curative resection. Transl Lung Cancer Res. 2022;11:24–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shu L, Liu S, Tao Y. Development and validation of a prognosis prediction model based on 18 endoplasmic reticulum stress-related genes for patients with lung adenocarcinoma. Front Oncol. 2022;12:902353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol. 2024;47:555–71.

  41. Tang J, Peng X, Xiao D, Liu S, Tao Y, Shu L. Disulfidptosis-related signature predicts prognosis and characterizes the immune microenvironment in hepatocellular carcinoma. Cancer Cell Int. 2024;24:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dagogo-Jack I, Valiev I, Kotlov N, Belozerova A, Lopareva A, Butusova A, et al. B-cell infiltrate in the tumor microenvironment is associated with improved survival in resected lung adenocarcinoma. JTO Clin Res Rep. 2023;4:100527.

    PubMed  PubMed Central  Google Scholar 

  43. Xue Q, Wang Y, Zheng Q, Chen L, Lin Y, Jin Y, et al. Prognostic value of tumor immune microenvironment factors in patients with stage I lung adenocarcinoma. Am J Cancer Res. 2023;13:950–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008;26:4410–7.

    Article  CAS  PubMed  Google Scholar 

  45. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 2014;189:832–44.

    Article  CAS  PubMed  Google Scholar 

  46. Wakasu S, Tagawa T, Haratake N, Kinoshita F, Oku Y, Ono Y, et al. Preventive effect of tertiary lymphoid structures on lymph node metastasis of lung adenocarcinoma. Cancer Immunol Immunother. 2023;72:1823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng C, Nguyen TT, Tang M, Wang X, Jiang C, Liu Y, et al. Immune infiltration in tumor and adjacent non-neoplastic regions codetermines patient clinical outcomes in early-stage lung cancer. J Thorac Oncol. 2023;18:1184–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cyster JG, Allen CDC. B cell responses: cell interaction dynamics and decisions. Cell. 2019;177:524–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu J, Song Y, Tian W. How to select IgG subclasses in developing anti-tumor therapeutic antibodies. J Hematol Oncol. 2020;13:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lohr M, Edlund K, Botling J, Hammad S, Hellwig B, Othman A, et al. The prognostic relevance of tumour-infiltrating plasma cells and immunoglobulin kappa C indicates an important role of the humoral immune response in non-small cell lung cancer. Cancer Lett. 2013;333:222–8.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Zhai S, Zhang J, Zhang D, Wang S, Wang L, et al. Interferon regulatory factor 4 correlated with immune cells infiltration could predict prognosis for patients with lung adenocarcinoma. Front Oncol. 2021;11:698465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fillatreau S. Regulatory plasma cells. Curr Opin Pharm. 2015;23:1–5.

    Article  CAS  Google Scholar 

  53. Lee HE, Luo L, Kroneman T, Passow MR, Del Rosario KM, Christensen MR, et al. Increased plasma cells and decreased B-cells in tumor infiltrating lymphocytes are associated with worse survival in lung adenocarcinomas. J Clin Cell Immunol. 2020;11:584.

  54. Kurebayashi Y, Emoto K, Hayashi Y, Kamiyama I, Ohtsuka T, Asamura H, et al. Comprehensive immune profiling of lung adenocarcinomas reveals four immunosubtypes with plasma cell subtype a negative indicator. Cancer Immunol Res. 2016;4:234–47.

    Article  CAS  PubMed  Google Scholar 

  55. Guo X, Zhang Y, Zheng L, Zheng C, Song J, Zhang Q, et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med. 2018;24:978–85.

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Jiang D, Zheng X, Li W, Zhao T, Wang D, et al. Tertiary lymphoid structure and decreased CD8(+) T cell infiltration in minimally invasive adenocarcinoma. iScience. 2022;25:103883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Raju Paul S, Valiev I, Korek SE, Zyrin V, Shamsutdinova D, Gancharova O, et al. B cell-dependent subtypes and treatment-based immune correlates to survival in stage 3 and 4 lung adenocarcinomas. FASEB Bioadv. 2023;5:156–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mony JT, Schuchert MJ. Prognostic implications of heterogeneity in intra-tumoral immune composition for recurrence in early stage lung cancer. Front Immunol. 2018;9:2298.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18:220.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016;17:218.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Iglesia MD, Parker JS, Hoadley KA, Serody JS, Perou CM, Vincent BG. Genomic analysis of immune cell infiltrates across 11 tumor types. J Natl Cancer Inst. 2016;108:djw144.

  64. Varn FS, Tafe LJ, Amos CI, Cheng C. Computational immune profiling in lung adenocarcinoma reveals reproducible prognostic associations with implications for immunotherapy. Oncoimmunology. 2018;7:e1431084.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu F, Wu H. CC chemokine receptors in lung adenocarcinoma: the inflammation-related prognostic biomarkers and immunotherapeutic targets. J Inflamm Res. 2021;14:267–85.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Yin X, Wang Q, Song X, Xia W, Mao Q, et al. A novel gene expression signature-based on B-cell proportion to predict prognosis of patients with lung adenocarcinoma. BMC Cancer. 2021;21:1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han L, Shi H, Luo Y, Sun W, Li S, Zhang N, et al. Gene signature based on B cell predicts clinical outcome of radiotherapy and immunotherapy for patients with lung adenocarcinoma. Cancer Med. 2020;9:9581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Song P, Li W, Wu X, Qian Z, Ying J, Gao S, et al. Integrated analysis of single-cell and bulk RNA-sequencing identifies a signature based on B cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma. Cancer Immunol Immunother. 2022;71:2341–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo D, Wang M, Shen Z, Zhu J. A new immune signature for survival prediction and immune checkpoint molecules in lung adenocarcinoma. J Transl Med. 2020;18:123.

    Article  PubMed  Google Scholar 

  70. Song Y, Yan S, Fan W, Zhang M, Liu W, Lu H, et al. Identification and validation of the immune subtypes of lung adenocarcinoma: implications for immunotherapy. Front Cell Dev Biol. 2020;8:550.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang H, Wang MS, Wang Y, Huang YQ, Shi JP, Ding ZL, et al. Prognostic value of immune related genes in lung adenocarcinoma. Oncol Lett. 2020;20:259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao M, Li M, Chen Z, Bian Y, Zheng Y, Hu Z, et al. Identification of immune-related gene signature predicting survival in the tumor microenvironment of lung adenocarcinoma. Immunogenetics. 2020;72:455–65.

    Article  CAS  PubMed  Google Scholar 

  73. Fan T, Pan S, Yang S, Hao B, Zhang L, Li D, et al. Clinical significance and immunologic landscape of a five-IL(R)-based signature in lung adenocarcinoma. Front Immunol. 2021;12:693062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Feng H, Yang F, Qiao L, Zhou K, Wang J, Zhang J, et al. Prognostic significance of gene signature of tertiary lymphoid structures in patients with lung adenocarcinoma. Front Oncol. 2021;11:693234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao Y, He D, Wen F. Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy. Immunogenetics. 2021;73:369–80.

    Article  CAS  PubMed  Google Scholar 

  76. Lu X, Ma L, Yin X, Ji H, Qian Y, Zhong S, et al. The impact of tobacco exposure on tumor microenvironment and prognosis in lung adenocarcinoma by integrative analysis of multi-omics data. Int Immunopharmacol. 2021;101:108253.

    Article  CAS  PubMed  Google Scholar 

  77. Guo S, Li T, Xu D, Xu J, Wang H, Li J, et al. Prognostic implications and immune infiltration characteristics of chromosomal instability-related dysregulated CeRNA in lung adenocarcinoma. Front Mol Biosci. 2022;9:843640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li C, Tian C, Zeng Y, Liang J, Yang Q, Gu F, et al. Integrated analysis of MATH-based subtypes reveals a novel screening strategy for early-stage lung adenocarcinoma. Front Cell Dev Biol. 2022;10:769711.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nai A, Ma F, He Z, Zeng S, Bashir S, Song J, et al. Development and validation of a 7-gene inflammatory signature forecasts prognosis and diverse immune landscape in lung adenocarcinoma. Front Mol Biosci. 2022;9:822739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhu H, Chen P, Dong G, Meng F, Xia Z, You J, et al. Correlation between Immune Microenvironment Features and EGFR Mutation Status in Lung Adenocarcinoma. Zhongguo Fei Ai Za Zhi. 2023;26:204–16.

  81. Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, Calvez A, et al. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. Immunity. 2022;55:527–41.e5.

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Zhang G, Ren X, Yao Z, Zhou Q, Ren X, et al. Cross-talk between myeloid and B cells shapes the distinct microenvironments of primary and secondary liver cancer. Cancer Res. 2023;83:3544–61.

    Article  CAS  PubMed  Google Scholar 

  83. Patel AJ, Willsmore ZN, Khan N, Richter A, Naidu B, Drayson MT, et al. Regulatory B cell repertoire defects predispose lung cancer patients to immune-related toxicity following checkpoint blockade. Nat Commun. 2022;13:3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Y, Li X, Peng S, Hu H, Wang Y, Shao M, et al. Single-cell analysis reveals spatial heterogeneity of immune cells in lung adenocarcinoma. Front Cell Dev Biol. 2021;9:638374.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu J, Yang X, Lu X, Zhang L, Luo W, Cheng Y, et al. Impact of T-cell receptor and B-cell receptor repertoire on the recurrence of early stage lung adenocarcinoma. Exp Cell Res. 2020;394:112134.

    Article  CAS  PubMed  Google Scholar 

  86. Enfield KSS, Martin SD, Marshall EA, Kung SHY, Gallagher P, Milne K, et al. Hyperspectral cell sociology reveals spatial tumor-immune cell interactions associated with lung cancer recurrence. J Immunother Cancer. 2019;7:13.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Gaudreau PO, Negrao MV, Mitchell KG, Reuben A, Corsini EM, Li J, et al. Neoadjuvant chemotherapy increases cytotoxic T cell, tissue resident memory T cell, and B cell infiltration in resectable NSCLC. J Thorac Oncol. 2021;16:127–39.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang X, Zhang Y, Xu J, Wang H, Zheng X, Lou Y, et al. Antigen presentation of the Oct4 and Sox2 peptides by CD154-activated B lymphocytes enhances the killing effect of cytotoxic T lymphocytes on tumor stem-like cells derived from cisplatin-resistant lung cancer cells. J Cancer. 2018;9:367–74.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang T, Yu H, Ni C, Zhang T, Liu L, Lv Q, et al. Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer. Sci Rep. 2017;7:4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lei QQ, Sui JD, Jin F, Luo HL, Shan JJ, Tang L, et al. Impact of high-dose rate radiotherapy on B and natural killer (NK) cell polarization in peripheral blood mononuclear cells (PBMCs) via inducing non-small cell lung cancer (NSCLC)-derived exosomes. Transl Cancer Res. 2021;10:3538–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Martin AL, Powell C, Nagy MZ, Innamarato P, Powers J, Nichols D, et al. Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites. Cancer Immunol Immunother. 2023;72:1445–60.

    Article  CAS  PubMed  Google Scholar 

  92. Wang J, Han Q, Liu H, Luo H, Li L, Liu A, et al. Identification of radiotherapy-associated genes in lung adenocarcinoma by an integrated bioinformatics analysis approach. Front Mol Biosci. 2021;8:624575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ku BM, Kim Y, Lee KY, Kim SY, Sun JM, Lee SH, et al. Tumor infiltrated immune cell types support distinct immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer. Eur J Immunol. 2021;51:956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Laza-Briviesca R, Cruz-Bermúdez A, Nadal E, Insa A, García-Campelo MDR, Huidobro G, et al. Blood biomarkers associated to complete pathological response on NSCLC patients treated with neoadjuvant chemoimmunotherapy included in NADIM clinical trial. Clin Transl Med. 2021;11:e491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Belderbos RA, Corneth OBJ, Dumoulin D, Hendriks RW, Aerts J, Willemsen M. Atypical B cells (CD21-CD27-IgD-) correlate with lack of response to checkpoint inhibitor therapy in NSCLC. Eur J Cancer. 2023;196:113428.

    Article  PubMed  Google Scholar 

  96. Nakahara Y, Matsutani T, Igarashi Y, Matsuo N, Himuro H, Saito H, et al. Clinical significance of peripheral TCR and BCR repertoire diversity in EGFR/ALK wild-type NSCLC treated with anti-PD-1 antibody. Cancer Immunol Immunother. 2021;70:2881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Budczies J, Kirchner M, Kluck K, Kazdal D, Glade J, Allgäuer M, et al. A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma. Oncoimmunology. 2021;10:1860586.

    Article  PubMed  PubMed Central  Google Scholar 

  98. DeFalco J, Harbell M, Manning-Bog A, Baia G, Scholz A, Millare B, et al. Non-progressing cancer patients have persistent B cell responses expressing shared antibody paratopes that target public tumor antigens. Clin Immunol. 2018;187:37–45.

    Article  CAS  PubMed  Google Scholar 

  99. Ng KW, Boumelha J, Enfield KSS, Almagro J, Cha H, Pich O, et al. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. Nature. 2023;616:563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xia L, Guo L, Kang J, Yang Y, Yao Y, Xia W, et al. Predictable roles of peripheral IgM memory B cells for the responses to anti-PD-1 monotherapy against advanced non-small cell lung cancer. Front Immunol. 2021;12:759217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Patil NS, Nabet BY, Müller S, Koeppen H, Zou W, Giltnane J, et al. Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell. 2022;40:289–300.e4.

    Article  CAS  PubMed  Google Scholar 

  102. Wu Z, Zhou J, Xiao Y, Ming J, Zhou J, Dong F, et al. CD20(+)CD22(+)ADAM28(+) B cells in tertiary lymphoid structures promote immunotherapy response. Front Immunol. 2022;13:865596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shimada T, Hoshino Y, Tsunemi T, Hattori A, Nakagawa E, Yokoyama K, et al. Neuromyelitis optica spectrum disorder after treatment with pembrolizumab. Mult Scler Relat Disord. 2020;37:101447.

    Article  PubMed  Google Scholar 

  104. Terashima T, Iwami E, Shimada T, Kuroda A, Matsuzaki T, Nakajima T, et al. IgG4-related pleural disease in a patient with pulmonary adenocarcinoma under durvalumab treatment: a case report. BMC Pulm Med. 2020;20:104.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Cho JW, Park S, Kim G, Han H, Shim HS, Shin S, et al. Dysregulation of T(FH)-B-T(RM) lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer. Nat Commun. 2021;12:6068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bian D, Sun L, Hu J, Duan L, Xia H, Zhu X, et al. Neoadjuvant afatinib for stage III EGFR-mutant non-small cell lung cancer: a phase II study. Nat Commun. 2023;14:4655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Imahayashi S, Ichiyoshi Y, Yoshino I, Eifuku R, Takenoyama M, Yasumoto K. Tumor-infiltrating B-cell-derived IgG recognizes tumor components in human lung cancer. Cancer Invest. 2000;18:530–6.

    Article  CAS  PubMed  Google Scholar 

  108. Chen H, Carrot-Zhang J, Zhao Y, Hu H, Freeman SS, Yu S, et al. Genomic and immune profiling of pre-invasive lung adenocarcinoma. Nat Commun. 2019;10:5472.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lastwika KJ, Kargl J, Zhang Y, Zhu X, Lo E, Shelley D, et al. Tumor-derived autoantibodies identify malignant pulmonary nodules. Am J Respir Crit Care Med. 2019;199:1257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tu YN, Tong WL, Callahan BM, Chobrutskiy BI, Blanck G. B-cell receptor recombinations in lung adenocarcinoma exome files correlate with a higher overall survival rate. Anticancer Res. 2020;40:2043–51.

    Article  CAS  PubMed  Google Scholar 

  111. Campa MJ, Moody MA, Zhang R, Liao HX, Gottlin EB, Patz EF Jr. Interrogation of individual intratumoral B lymphocytes from lung cancer patients for molecular target discovery. Cancer Immunol Immunother. 2016;65:171–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Talebian Yazdi M, Loof NM, Franken KL, Taube C, Oostendorp J, Hiemstra PS, et al. Local and systemic XAGE-1b-specific immunity in patients with lung adenocarcinoma. Cancer Immunol Immunother. 2015;64:1109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Griñan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci. 2015;1362:224–38.

    Article  CAS  PubMed  Google Scholar 

  114. Liu J, Li Y, Lu Z, Gu J, Liang Y, Huang E, et al. Deceleration of glycometabolism impedes IgG-producing B-cell-mediated tumor elimination by targeting SATB1. Immunology. 2019;156:56–68.

    Article  CAS  PubMed  Google Scholar 

  115. Chae YK, Choi WM, Bae WH, Anker J, Davis AA, Agte S, et al. Overexpression of adhesion molecules and barrier molecules is associated with differential infiltration of immune cells in non-small cell lung cancer. Sci Rep. 2018;8:1023.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu Y, Xie P, Jiang D, Liu J, Zhang J, Bian T, et al. Molecular and immune characteristics for lung adenocarcinoma patients with ERLIN2 overexpression. Front Immunol. 2020;11:568440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma C, Luo H, Cao J, Gao C, Fa X, Wang G. Independent prognostic implications of RRM2 in lung adenocarcinoma. J Cancer. 2020;11:7009–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun Y, Zhang Y, Ren S, Li X, Yang P, Zhu J, et al. Low expression of RGL4 is associated with a poor prognosis and immune infiltration in lung adenocarcinoma patients. Int Immunopharmacol. 2020;83:106454.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang C, Wang H, Wang X, Zhao C, Wang H. CD44, a marker of cancer stem cells, is positively correlated with PD-L1 expression and immune cells infiltration in lung adenocarcinoma. Cancer Cell Int. 2020;20:583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zheng X, Li Y, Ma C, Zhang J, Zhang Y, Fu Z, et al. Independent prognostic potential of GNPNAT1 in lung adenocarcinoma. Biomed Res Int. 2020;2020:8851437.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bian T, Zheng M, Jiang D, Liu J, Sun H, Li X, et al. Prognostic biomarker TUBA1C is correlated to immune cell infiltration in the tumor microenvironment of lung adenocarcinoma. Cancer Cell Int. 2021;21:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang Z, Liu Z, Cheng X, Han Z, Li J, Xia T, et al. Prognostic significance of HSF2BP in lung adenocarcinoma. Ann Transl Med. 2021;9:1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ma W, Liang J, Mo J, Zhang S, Hu N, Tian D, et al. Butyrophilin-like 9 expression is associated with outcome in lung adenocarcinoma. BMC Cancer. 2021;21:1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ren S, Wang W, Zhang C, Sun Y, Sun M, Wang Y, et al. The low expression of NUP62CL indicates good prognosis and high level of immune infiltration in lung adenocarcinoma. Cancer Med. 2021;10:3403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li X, Yao Y, Qian J, Jin G, Zeng G, Zhao H. Overexpression and diagnostic significance of INTS7 in lung adenocarcinoma and its effects on tumor microenvironment. Int Immunopharmacol. 2021;101:108346.

    Article  CAS  PubMed  Google Scholar 

  126. Liu XS, Zhou LM, Yuan LL, Gao Y, Kui XY, Liu XY, et al. NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front Immunol. 2021;12:724741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Shi J, Lv X, Li W, Ming Z, Zeng L, Yuan J, et al. Overexpression of BCCIP predicts an unfavorable prognosis and promotes the proliferation and migration of lung adenocarcinoma. Thorac Cancer. 2021;12:2324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu L, Qiao R, Xu J, Han B, Zhong R. FAM207BP, a pseudogene-derived lncRNA, facilitates proliferation, migration and invasion of lung adenocarcinoma cells and acts as an immune-related prognostic factor. Life Sci. 2021;268:119022.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang M, Huo C, Jiang Y, Liu J, Yang Y, Yin Y, et al. AURKA and FAM83A are prognostic biomarkers and correlated with tumor-infiltrating lymphocytes in smoking related lung adenocarcinoma. J Cancer. 2021;12:1742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zheng M, Liu J, Bian T, Liu L, Sun H, Zhou H, et al. Correlation between prognostic indicator AHNAK2 and immune infiltrates in lung adenocarcinoma. Int Immunopharmacol. 2021;90:107134.

    Article  CAS  PubMed  Google Scholar 

  131. Zheng Q, Wang Z, Zhang M, Yu Y, Chen R, Lu T, et al. Prognostic value of SEC61G in lung adenocarcinoma: a comprehensive study based on bioinformatics and in vitro validation. BMC Cancer. 2021;21:1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Huang J, Xie ZF. Identification of SSBP1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches. Math Biosci Eng. 2022;19:3022–35.

    Article  PubMed  Google Scholar 

  133. Wang Q, Liu J, Cheang I, Li J, Chen T, Li Y, et al. Comprehensive analysis of the E2F transcription factor family in human lung adenocarcinoma. Int J Gen Med. 2022;15:5973–84.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Yang Y, Liu Y, Gao P, Liu K, Zhao K, Ying R, et al. Prognostic significance of ANGPTL4 in lung adenocarcinoma: a meta-analysis based on integrated TCGA and GEO databases. Evid Based Complement Altern Med. 2022;2022:3444740.

    Article  Google Scholar 

  135. Zhang G, Dong R, Kong D, Liu B, Zha Y, Luo M. The effect of GLUT1 on the survival rate and immune cell infiltration of lung adenocarcinoma and squamous cell carcinoma: a meta and bioinformatics analysis. Anticancer Agents Med Chem. 2022;22:223–38.

    Article  CAS  PubMed  Google Scholar 

  136. Aluksanasuwan S, Somsuan K, Ngoenkam J, Chutipongtanate S, Pongcharoen S. Potential association of HSPD1 with dysregulations in ribosome biogenesis and immune cell infiltration in lung adenocarcinoma: an integrated bioinformatic approach. Cancer Biomark. 2024;39:155–70.

  137. Jing Y, Mao Z, Zhu J, Ma X, Liu H, Chen F. TRAIP serves as a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. Int Immunopharmacol. 2023;122:110605.

    Article  CAS  PubMed  Google Scholar 

  138. Wei S, Xing J, Lu K, Wang K, Yu W. NPM3 as a novel oncogenic factor and poor prognostic marker contributes to cell proliferation and migration in lung adenocarcinoma. Hereditas. 2023;160:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou H, Li S, Lin Y. Prognostic significance of SH2D5 expression in lung adenocarcinoma and its relation to immune cell infiltration. PeerJ. 2023;11:e15238.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Wang W, Ren S, Wang Z, Zhang C, Huang J. Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level. Int Immunopharmacol. 2020;78:106077.dysregulations in ribosome biogenesis and immune cell infiltration

    Article  CAS  PubMed  Google Scholar 

  141. Chen X, Yuan Y, Ren W, Zhou F, Huang X, Pu J, et al. Pan-cancer integrated analysis identification of SASH3, a potential biomarker that inhibits lung adenocarcinoma progression. Front Oncol. 2022;12:927988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin Y, Zhou H, Li S. BTN3A2 expression is connected with favorable prognosis and high infiltrating immune in lung adenocarcinoma. Front Genet. 2022;13:848476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shao Y, Zheng Z, Li S, Yang G, Qi F, Fei F. Upregulation of EMID1 accelerates to a favorable prognosis and immune infiltration in lung adenocarcinoma. J Oncol. 2022;2022:5185202.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wei Q, Miao T, Zhang P, Jiang B, Yan H. Comprehensive analysis to identify GNG7 as a prognostic biomarker in lung adenocarcinoma correlating with immune infiltrates. Front Genet. 2022;13:984575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xiao XY, Guo Q, Tong S, Wu CY, Chen JL, Ding Y, et al. TRAT1 overexpression delays cancer progression and is associated with immune infiltration in lung adenocarcinoma. Front Oncol. 2022;12:960866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang XZ, Chen MJ, Fan PM, Jiang W, Liang SX. BTG2 serves as a potential prognostic marker and correlates with immune infiltration in lung adenocarcinoma. Int J Gen Med. 2022;15:2727–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhong Z, Wang J, Han Q, Lin H, Luo H, Guo D, et al. XBP1 impacts lung adenocarcinoma progression by promoting plasma cell adaptation to the tumor microenvironment. Front Genet. 2022;13:969536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li X, Zhu G, Li Y, Huang H, Chen C, Wu D, et al. LINC01798/miR-17-5p axis regulates ITGA8 and causes changes in tumor microenvironment and stemness in lung adenocarcinoma. Front Immunol. 2023;14:1096818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhu W, Germain C, Liu Z, Sebastian Y, Devi P, Knockaert S, et al. A high density of tertiary lymphoid structure B cells in lung tumors is associated with increased CD4(+) T cell receptor repertoire clonality. Oncoimmunology. 2015;4:e1051922.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Federico L, McGrail DJ, Bentebibel SE, Haymaker C, Ravelli A, Forget MA, et al. Distinct tumor-infiltrating lymphocyte landscapes are associated with clinical outcomes in localized non-small-cell lung cancer. Ann Oncol. 2022;33:42–56.

    Article  CAS  PubMed  Google Scholar 

  151. Germain C, Devi-Marulkar P, Knockaert S, Biton J, Kaplon H, Letaïef L, et al. Tertiary lymphoid structure-B cells narrow regulatory T cells impact in lung cancer patients. Front Immunol. 2021;12:626776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Braud VM, Biton J, Becht E, Knockaert S, Mansuet-Lupo A, Cosson E, et al. Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. Oncoimmunology. 2018;7:e1423184.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, et al. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell. 2021;184:6101–18.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao H, Wang H, Zhao Y, Sun Q, Ren X. Tumor-resident T cells, associated with tertiary lymphoid structure maturity, improve survival in patients with stage III lung adenocarcinoma. Front Immunol. 2022;13:877689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang ZY, Shao MM, Zhang JC, Yi FS, Du J, Zhou Q, et al. Single-cell analysis of diverse immune phenotypes in malignant pleural effusion. Nat Commun. 2021;12:6690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Shao MM, Zhai K, Huang ZY, Yi FS, Zheng SC, Liu YL, et al. Characterization of the alternative splicing landscape in lung adenocarcinoma reveals novel prognosis signature associated with B cells. PLoS ONE. 2023;18:e0279018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma QY, Chen J, Zhao J. Follicular cytotoxic CD8 T cells present high cytokine expression, and are more susceptible to Breg-mediated suppression in non-small cell lung cancer. Immunol Res. 2020;68:54–62.

    Article  CAS  PubMed  Google Scholar 

  158. Shi W, Yang B, Sun Q, Meng J, Zhao X, Du S, et al. PD-1 regulates CXCR5(+) CD4 T cell-mediated proinflammatory functions in non-small cell lung cancer patients. Int Immunopharmacol. 2020;82:106295.

    Article  CAS  PubMed  Google Scholar 

  159. Aklilu M, Stadler WM, Markiewicz M, Vogelzang NJ, Mahowald M, Johnson M, et al. Depletion of normal B cells with rituximab as an adjunct to IL-2 therapy for renal cell carcinoma and melanoma. Ann Oncol. 2004;15:1109–14.

    Article  CAS  PubMed  Google Scholar 

  160. Li S, Mirlekar B, Johnson BM, Brickey WJ, Wrobel JA, Yang N, et al. STING-induced regulatory B cells compromise NK function in cancer immunity. Nature. 2022;610:373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rivas JR, Liu Y, Alhakeem SS, Eckenrode JM, Marti F, Collard JP, et al. Interleukin-10 suppression enhances T-cell antitumor immunity and responses to checkpoint blockade in chronic lymphocytic leukemia. Leukemia. 2021;35:3188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [82072594, YT; 82073097, 81874139, SL; 82073136, DX] and The Science and Technology Innovation Program of Hunan Province [2022RC3072, YT].

Author information

Authors and Affiliations

Authors

Contributions

Long Shu conducted the comprehensive literature search, performed data analysis, and drafted the initial manuscript. Tania Tao and Desheng Xiao contributed to the conceptualization of the review framework, participated in critical literature screening, and provided constructive suggestions for refining the content. Shuang Liu and Yongguang Tao supervised the entire research process, oversaw the design of the review structure, and critically revised the manuscript for intellectual content. All authors reviewed and approved the final version of the manuscript, and Shuang Liu and Yongguang Tao also coordinated the funding acquisition and project administration.

Corresponding authors

Correspondence to Shuang Liu or Yongguang Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Tao, T., Xiao, D. et al. The role of B cell immunity in lung adenocarcinoma. Genes Immun 26, 253–265 (2025). https://doi.org/10.1038/s41435-025-00331-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41435-025-00331-9

This article is cited by

Search

Quick links