Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macrophage retrotransposon expression is associated with lupus

Abstract

Genetic variants of NCF1 that impair the production of reactive oxygen species (ROS) are associated with lupus in humans; however, the underlying mechanism of immune dysregulation remains unclear. To clarify this mechanism, the study tested the hypothesis that retrotransposons contribute to the early onset of lupus by facilitating the expansion and activation of macrophages. Using the ROS-deficient lupus-prone lpr mouse model, we employed bulk RNA sequencing, flow cytometry, and spatially resolved single-cell transcriptome imaging to comprehensively characterize tissue-resident macrophages. The results demonstrated increased expression of the mouse transcript family type D (MTD) retrotransposon in tissue-resident macrophages from the spleen, kidneys, and skull dura of ROS-deficient lpr mice, indicating a link between ROS deficiency, MTD expression, and macrophage expansion. Importantly, this MTD expression decreased following two weeks of mycophenolate mofetil therapy, linking therapy response to retrotransposon activity. Furthermore, the MTD-encoded RNA was used to disrupt the signaling of retrotransposons, leading to regulatory T-cell activation and downregulation of both glomerular macrophage infiltration and serum interleukin-6 secretion in lupus-prone mice. Collectively, these findings suggest that the MTD retrotransposons play a crucial role in driving the early onset of lupus by enhancing macrophage activation, which in turn promotes immune dysregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Ncf1 polymorphism induces MTD expression in the blood.
Fig. 2: The Ncf1 polymorphism enhances the activation of monocytes/macrophages.
Fig. 3: The Ncf1 polymorphism led to a reduction in the regulatory CD4 T cells.
Fig. 4: The Ncf1 polymorphism enhances the activation of renal macrophages.
Fig. 5: The Ncf1 polymorphism led to an increase in macrophages in the skull dura.
Fig. 6: RNA delivery alleviated the CEBPB signaling.
Fig. 7: RNA delivery alleviated the IL-6 secretion and macrophage infiltration.
Fig. 8: An overview of MTD retrotransposon signaling in lupus.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information file].

References

  1. Zhong J, Olsson LM, Urbonaviciute V, Yang M, Bäckdahl L, Holmdahl R. Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med. 2018;125:72–80.

    Article  CAS  PubMed  Google Scholar 

  2. Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, et al. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight. 2024;9:e178563.

    PubMed  PubMed Central  Google Scholar 

  3. Al-Azab M, Idiiatullina E, Liu Z, Lin M, Hrovat-Schaale K, Xian H, et al. Genetic variants in UNC93B1 predispose to childhood-onset systemic lupus erythematosus. Nat Immunol. 2024;25:969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Coelho A, Li Z, Alsved M, Li Q, Xu R, et al. The systemic lupus erythematosus-associated NCF190H allele synergizes with viral infection to cause mouse lupus but also limits virus spread. Nat Commun. 2025;16:1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hawtin S, André C, Collignon-Zipfel G, Appenzeller S, Bannert B, Baumgartner L, et al. Preclinical characterization of the Toll-like receptor 7/8 antagonist MHV370 for lupus therapy. Cell Rep Med. 2023;4:101036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, et al. Regulation of human interferon signaling by transposon exonization. Cell. 2024;187:7621–36.e19.

    Article  CAS  PubMed  Google Scholar 

  7. Sareila O, Jaakkola N, Olofsson P, Kelkka T, Holmdahl R. Identification of a region in p47phox/NCF1 crucial for phagocytic NADPH oxidase (NOX2) activation. J Leukoc Biol. 2012;93:427–35.

    Article  PubMed  Google Scholar 

  8. Luo H, Urbonaviciute V, Saei AA, Lyu H, Gaetani M, Végvári Á, et al. NCF1-dependent production of ROS protects against lupus by regulating plasmacytoid dendritic cell development and functions. JCI Insight. 2023;8:e164875.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Parodis I, Lindblom J, Barturen G, Ortega-Castro R, Cervera R, Pers J-O, et al. Molecular characterisation of lupus low disease activity state (LLDAS) and DORIS remission by whole-blood transcriptome-based pathways in a pan-European systemic lupus erythematosus cohort. Ann Rheum Dis. 2024;83:889–900.

    Article  CAS  PubMed  Google Scholar 

  10. Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JDM. Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immun. 2002;3:S66–S70.

    Article  CAS  PubMed  Google Scholar 

  11. Wu J, Xie F, Qian K, Gibson AW, Edberg JC, Kimberly RP. FAS mRNA editing in human systemic lupus erythematosus. Hum Mutat. 2011;32:1268–77.

    Article  CAS  PubMed  Google Scholar 

  12. Bogutz AB, Brind’Amour J, Kobayashi H, Jensen KN, Nakabayashi K, Imai H, et al. Evolution of imprinting via lineage-specific insertion of retroviral promoters. Nat Commun. 2019;10:5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Matsubara H, Shimizu Y, Arai M, Yamagata A, Ito S, Imakiire T, et al. PEPITEM/Cadherin 15 Axis Inhibits T Lymphocyte Infiltration and Glomerulonephritis in a Mouse Model of Systemic Lupus Erythematosus. J Immunol. 2020;204:2043–52.

    Article  CAS  PubMed  Google Scholar 

  14. Sethi S, Madden B, Debiec H, Morelle J, Charlesworth MC, Gross L, et al. Protocadherin 7–Associated Membranous Nephropathy. J Am Soc Nephrol. 2021;32:1249–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Der Vlist M, Ramos MIP, Van Den Hoogen LL, Hiddingh S, Timmerman LM, De Hond TAP, et al. Signaling by the inhibitory receptor CD200R is rewired by type I interferon. Sci Signal. 2021;14:eabb4324.

    Article  PubMed  Google Scholar 

  16. Huang C, Zhan L, Hannigan MO, Ai Y, Leto TL. P47phox-deficient NADPH oxidase defect in neutrophils of diabetic mouse strains, C57BL/6J-m db/db and dbl+. J Leukoc Biol. 2000;67:210–5.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  18. Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA. 2021;12:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA–RNA interactions. Nucleic Acids Res. 2017;45:W435–W439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhong J, Scholz T, Yau ACY, Guerard S, Hüffmeier U, Burkhardt H, et al. Mannan-induced Nos2 in macrophages enhances IL-17–driven psoriatic arthritis by innate lymphocytes. Sci Adv. 2018;4:eaas9864.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhong J, Li Q, Holmdahl R. Natural loss-of-function mutations in Qa2 and NCF1 cause the spread of Mannan-induced psoriasis. J Invest Dermatol. 2021;141:1765–71.e4.

    Article  CAS  PubMed  Google Scholar 

  22. Zhong J, Zheng C, Chen Z, Yue H, Gao H, Jiang Y, et al. Phosphopeptides P140 cause oxidative burst responses of pulmonary macrophages in an imiquimod-induced lupus model. Mol Biomed. 2023;4:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods. 2021;18:100–6.

    Article  CAS  PubMed  Google Scholar 

  24. Stirling DR, Swain-Bowden MJ, Lucas AM, Carpenter AE, Cimini BA, Goodman A. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinforma. 2021;22:433.

    Article  Google Scholar 

  25. Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol. 2020;15:313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borm, Mossi LE, Albiach A, Mannens CCA, Janusauskas J, Özgün C, et al. Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nat Biotechnol. 2023;41:222–31.

    CAS  PubMed  Google Scholar 

  27. Zeng H, Huang J, Ren J, Wang CK, Tang Z, Zhou H, et al. Spatially resolved single-cell translatomics at molecular resolution. Science. 2023;380:eadd3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perez AA, Goronzy IN, Blanco MR, Yeh BT, Guo JK, Lopes CS, et al. ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements. Nat Genet. 2024;56:2827–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng X, Dozmorov MG, Strohlein CE, Bastacky S, Sawalha AH. Ezh2 knockout in B cells impairs plasmablast differentiation and ameliorates lupus-like disease in MRL / lpr mice. Arthritis Rheum. 2023;75:1395–406.

    Article  CAS  Google Scholar 

  31. Rauch E, Amendt T, Lopez Krol A, Lang FB, Linse V, Hohmann M, et al. T-bet+ B cells are activated by and control endogenous retroviruses through TLR-dependent mechanisms. Nat Commun. 2024;15:1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Baeyens A, Bracero S, Chaluvadi VS, Khodadadi-Jamayran A, Cammer M, Schwab SR. Monocyte-derived S1P in the lymph node regulates immune responses. Nature. 2021;592:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bianchi E, Doe B, Goulding D, Wright GJ. Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature. 2014;508:483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhong J, Yau ACY, Holmdahl R. Regulation of T Cell Function by Reactive Nitrogen and Oxygen Species in Collagen-Induced Arthritis. Antioxid Redox Signal. 2020;32:161–72.

    Article  CAS  PubMed  Google Scholar 

  35. Zhong J, Yau ACY, Holmdahl R. Independent and inter-dependent immunoregulatory effects of NCF1 and NOS2 in experimental autoimmune encephalomyelitis. J Neuroinflamm. 2020;17:113.

    Article  CAS  Google Scholar 

  36. Li Q, Zhong J, Luo H, Urbonaviciute V, Xu Z, He C, et al. Two major genes associated with autoimmune arthritis, Ncf1 and Fcgr2b, additively protect mice by strengthening T cell tolerance. Cell Mol Life Sci. 2022;79:482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khmaladze I, Kelkka T, Guerard S, Wing K, Pizzolla A, Saxena A, et al. Mannan induces ROS-regulated, IL-17A–dependent psoriasis arthritis-like disease in mice. Proc Natl Acad Sci USA. 2014;111:E3669–E36678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhu W, Lönnblom E, Förster M, Johannesson M, Tao P, Meng L, et al. Natural polymorphism of Ym1 regulates pneumonitis through alternative activation of macrophages. Sci Adv. 2020;6:eaba9337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kraaij MD, Savage NDL, Van Der Kooij SW, Koekkoek K, Wang J, Van Den Berg JM, et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci USA. 2010;107:17686–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Raeber ME, Caspar DP, Zurbuchen Y, Guo N, Schmid J, Michler J, et al. Interleukin-2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue-homing characteristics. Immunity. 2024;57:2232–50.e10.

    Article  CAS  PubMed  Google Scholar 

  41. Chandy KG, DeCoursey TE, Fischbach M, Talal N, Cahalan MD, Gupta S. Altered K + channel expression in abnormal T lymphocytes from mice with the lpr gene mutation. Science. 1986;233:1197–200.

    Article  CAS  PubMed  Google Scholar 

  42. Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, et al. K + Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 2016;45:761–73.

    Article  PubMed  Google Scholar 

  43. Schauer C, Janko C, Munoz LE, Zhao Y, Kienhöfer D, Frey B, et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20:511–7.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ, et al. The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Invest. 2021;131:e136329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abedini A, Levinsohn J, Klötzer KA, Dumoulin B, Ma Z, Frederick J, et al. Single-cell multi-omic and spatial profiling of human kidneys implicates the fibrotic microenvironment in kidney disease progression. Nat Genet. 2024;56:1712–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arkatkar T, Du SW, Jacobs HM, Dam EM, Hou B, Buckner JH, et al. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J Exp Med. 2017;214:3207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reynolds J, Huang M, Li Y, Meineck M, Moeckel T, Weinmann-Menke J, et al. Constitutive knockout of interleukin-6 ameliorates memory deficits and entorhinal astrocytosis in the MRL/lpr mouse model of neuropsychiatric lupus. J Neuroinflamm. 2024;21:89.

    Article  CAS  Google Scholar 

  48. Zhong J, Tian J, Yang X, Qin C. Whole-body Cerenkov luminescence tomography with the finite element SP3 method. Ann Biomed Eng. 2011;39:1728–35.

    Article  PubMed  Google Scholar 

  49. Zhong J, Zheng C, Gao H, Tong W, Hui H, Tian J. Noninvasive imaging of the lung NETosis by anti-Ly6G iron oxide nanoparticles. Heliyon. 2022;8:e10043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Beijing Natural Science Foundation [IS23113, L222141, 7252286, J2023010], the National Natural Science Foundation of China [62027901], and the Fundamental Research Funds for the Central Universities [YWF23YG-QB015].

Author information

Authors and Affiliations

Authors

Contributions

JZ designed and supervised the study, analyzed the data, and wrote the manuscript. ZC performed the experiments, analyzed the data, and revised the paper. HY, ZH, and WZ performed the experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianghong Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics

The animal study protocols were approved by the ethical committees of Beihang University, China (BM20210060). All animal models and experimental procedures were performed in accordance with standard laboratory guidelines, institutional biosafety regulations, and manufacturer’s recommendations. No primary human tissues, human subjects, or cell lines were involved in this research.

Consent for publication

Not applicable—this study does not involve human participants and contains no individual participant data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Chen, Z., Yue, H. et al. Macrophage retrotransposon expression is associated with lupus. Genes Immun (2025). https://doi.org/10.1038/s41435-025-00369-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41435-025-00369-9

Search

Quick links