Table 4 Tools for assigning the pathogenic likelihood or functional impact of variants.

From: Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases

 

BaylorSeq

BCM

Duke/Columbia

Harvard

Miami

NIH

PacificNW

Stanford

UCLA

Utah

Vanderbilt

WUSTL

Cross-species conservation scores

 GERP++: Genomic Evolutionary Rate Profiling

 

  

   

 

 PhastCons

    

     

Predicted functionality or pathogenicity

 PolyPhen-2

  

 SIFT

 

  

 MutationTaster

   

 

    

 MVP: missense variant pathogenicity

       

    

 ReMM: regulatory Mendelian mutation

       

    

Ensemble pathogenicity predictors

 CADD: Combined Annotation Dependent Depletion

  

  

 REVEL: Rare Exome Variant Ensemble Learner

 

 

 

 

 DANN: Deep Neural Net version of CADD

   

       

 M-CAP: Mendelian Clinically Applicable Pathogenicity

       

   

 DOMINO: Dominant Disorder Associated Genesa

 

          

 Eigen

     

      

Predicted splice- or expression-altering effect

 SpliceAI

 

 

 GTEx: Genotype-Tissue Expression

 

  

  

 

  

 SpliceRegion annotations from VEP

      

 

 

 dbscSNV (splicing consensus SNVs)

    

   

  

 Human Splicing Factor

 

        

 

 MMSplice: Modular modeling of splicing

    

      

 MaxEntScan

     

    

 

 TraP: Transcript-inferred Pathogenicity

  

         
  1. Variants of uncertain significance (i.e., that are not already known to be associated with disease) can be evaluated for functional or pathogenic impact using predictive models. Tool citations are listed in Extended Data Table 1.
  2. aUnlike other tools, DOMINO provides scores per gene rather than per variant.