Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic insights into population structure and predictive breeding for climate-resilient coffee

Abstract

Climate change poses a growing threat to global coffee production, particularly for Coffea arabica, the most widely cultivated species. Coffea canephora (Robusta), with greater tolerance to heat and environmental stress, represents a critical genetic resource for sustaining future supply. Despite its increasing importance, the species is still relatively understudied with respect to population structure and trait architecture—factors that are important for guiding breeding efforts. Here, we combine population genetic analyses with genomic prediction to inform the improvement of C. canephora using a representative breeding collection from West Africa. First, we characterized the genetic structure of the cultivated germplasm and confirmed the presence of three main genetic pools: Robusta, Conilon, and Guinean. Second, we quantified phenotypic variation and genetic parameters for 11 agronomic traits, demonstrating a significant contribution of non-additive effects—particularly for yield. Third, we evaluated the performance of genomic prediction models incorporating additive and dominance effects, and proposed their integration into a reciprocal recurrent selection scheme to exploit heterosis. Altogether, our findings highlight the utility of incorporating structured genetic diversity and non-additive effects into breeding strategies. The framework presented here provides a foundation for improving the predictive accuracy and long-term adaptability of C. canephora, with broader implications for genomic-assisted breeding under climate stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population structure and genetic diversity.
Fig. 2: Principal component analyses (PCA) based on 13 phenotypic traits evaluated in a Coffea canephora germplasm collection.
Fig. 3: Phenotypic analysis.

Similar content being viewed by others

Data availability

Supporting data are available on the project’s GitHub page (https://github.com/lfelipe-ferrao).

References

  • Adunola P, Ferrão MAG, Ferrão RG et al. (2023) Genomic selection for genotype performance and environmental stability in Coffea canephora. G3 Genes Genomes Genet 13:jkad062

    Article  CAS  Google Scholar 

  • Alekcevetch JC, Carneiro Fde A, Rêgo ÉC, da S et al. (2013) Estudo da diversidade genética de uma população de Coffea canephora var. conilon por meio de marcadores moleculares do tipo SSR Coffee Science 8:269–277

    Google Scholar 

  • Alkimim ER, Caixeta ET, Sousa TV et al. (2020) Selective efficiency of genome-wide selection in Coffea canephora breeding. Tree Genet Genomes 16:1–11

    Article  Google Scholar 

  • Amadeu RR, Garcia AAF, Munoz PR, Ferrão LFV (2023) AGHmatrix: genetic relationship matrices in R. Bioinformatics 39:btad445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avelino J, Cristancho M, Georgiou S et al. (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7:303–321

    Article  Google Scholar 

  • Berthaud J, Charrier A (1988) Genetic resources of Coffea. In: Clarke RJ, Macrae R (eds) Coffee: 4. Agronomy. Elsevier Applied Science, Londres, pp 1–42

  • Browning D (2018) How many coffee farms are there in the world? Paper presented at the 30th Association for Science and Information on Coffee (ASIC) Conference, Portland, USA

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunn C, Läderach P, Ovalle Rivera O et al. (2015) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change 129:89–101

    Article  Google Scholar 

  • Bollen R, Verleysen L, Katshela BN, Kambale JL, Ebele T, Ruttink T, Vandelook F, Honnay O, Stoffelen P (2024) Sensory profiles of Robusta coffee (Coffea canephora) genetic resources from the Democratic Republic of the Congo. Front Sustain Food Syst 8:1–11

    Article  Google Scholar 

  • Carvalho HF, Ferrão LFV, Galli G et al. (2023) On the accuracy of threshold genomic prediction models for leaf miner and leaf rust resistance in arabica coffee. Tree Genet Genomes 19:11

    Article  Google Scholar 

  • Coelho de Sousa I, Nascimento M, de Castro Sant’anna I et al. (2022) Marker effects and heritability estimates using additive-dominance genomic architectures via artificial neural networks in Coffea canephora. PLoS ONE 17:e0262055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cros D, Denis M, Bouvet JM, Sánchez L (2015) Long-term genomic selection for heterosis without dominance in multiplicative traits: case study of bunch production in oil palm. BMC Genom 16(1):651

    Article  Google Scholar 

  • Crow JF (1998) 90 years ago: the beginning of hybrid maize. Genetics 148:923–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Campos G, Gianola D, Rosa GJM (2009) Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation. J Anim Sci 87(6):1883–1887

    Article  PubMed  Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS ONE 7(11):e47981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denoeud F, Carretero-paulet L, Dereeper A et al. (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. 345:1181–1184 https://doi.org/10.1126/science.1255274

  • Earl DA, VonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferrão LFV, Ferrão RG, Ferrão MAG et al. (2019) Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. Heredity 122:261–275

    Article  PubMed  Google Scholar 

  • Ferrão MAG, Riva-Souza EM, Azevedo C et al. (2024) Robust and smart: Inference on phenotypic plasticity of Coffea canephora reveals adaptation to alternative environments Crop Sci 64:csc2.21298. https://doi.org/10.1002/csc2.21298

    Article  CAS  Google Scholar 

  • Garavito A, Montagnon C, Guyot R, Bertrand B (2016) Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biol 16:1–12

    Article  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. Preprint at arXiv https://doi.org/10.48550/arXiv.1207.3907

  • Gnapi DE, N’Da Pokou D, Legnate H et al. (2022a) Genetic structuring of parental populations of coffee (Coffea canephora Pierre ex A. Froehner) breeding in Côte d’Ivoire using SNP markers. Tree Genetics & Genomes, 18:28 https://doi.org/10.1007/s11295-022-01576-3.

  • Gnapi DE, Pokou DN, Legnate H et al. (2022b) Is the genetic integrity of wild Coffea canephora from Ivory Coast threatened by hybridization with introduced coffee trees from Central Africa?. Euphytica 218: 62

    Article  CAS  Google Scholar 

  • Gomez C, Dussert S, Hamon P et al. (2009) Current genetic differentiation of Coffea canephora Pierre ex A. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9:1–19

    Article  Google Scholar 

  • International Coffee Organization (2024) Press Release PR 357/24: On International Coffee Day 2024, the ICO invites the coffee sector to embrace collaboration for collective action with the message “Coffee: your daily ritual, our shared journey.” London, United Kingdom. Retrieved from https://www.ico.org/documents/cy2023-24/pr-357e-icd2024.pdf

  • Kiwuka C, Goudsmit E, Tournebize R et al. (2021) Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): climate influences, breeding potential and diversity conservation. PLoS ONE 16:e0245965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy T, De Bellis F, Legnate H et al. (2011) Improving the quality of African robustas: QTLs for yield-and quality-related traits in Coffea canephora. Tree Genet Genomes 7:781–798

    Article  Google Scholar 

  • Leroy T, Montagnon C, Charrier A, Eskes AB (1993) Reciprocal recurrent selection applied to Coffea canephora Pierre. Euphytica 74:121–128

    Article  Google Scholar 

  • Leroy T, Montagnon C, Cilas C et al. (1997) Reciprocal recurrent selection applied to Coffea canephora Pierre. III. Genetic gains and results of first cycle intergroup crosses. Euphytica 95:347–354

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes UV, Pires JL, Gramacho KP, Grattapaglia D (2022) Genome-wide SNP genotyping as a simple and practical tool to accelerate the development of inbred lines in outbred tree species: An example in cacao (Theobroma cacao L.). PLoS ONE 17(10):e0270437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCook S, Vandermeer J (2015) The Big Rust and the Red Queen: long-term perspectives on coffee rust research. Phytopathology 105(9):1164–1173

    Article  CAS  PubMed  Google Scholar 

  • Merot-L’anthoene V, Tournebize R, Darracq O et al. (2019) Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. Plant Biotechnol J 17:1418–1430. https://doi.org/10.1111/pbi.13066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnon C, Leroy T, Cilas C, Legnaté H, Charrier A (2008) Heterozygous genotypes are efficient testers for assessing between-population combining ability in the reciprocal recurrent selection of Coffea canephora. Euphytica 160(1):101–110

    Article  Google Scholar 

  • Montagnon C (2000) Optimisation des gains génétiques dans le schéma de sélection récurrente réciproque de Coffea canephora Pierre France: Université Montpellier II, Thèse de Doctorat

  • Montagnon C, Cubry P, Leroy T (2012) Amélioration génétique du caféier Coffea canephora Pierre: connaissances acquises, stratégies et perspectives. Cah Agric 21:143–153

    Google Scholar 

  • Montagnon C, Leroy T (1993) Réaction à la sécheresse de jeunes caféiers Coffea canephora de Côte d’Ivoire appartenant à différents groupes génétiques. Cafe Cacao Thé 37:179–190

    Google Scholar 

  • Montagnon C, Leroy T, Eskes A (1998a) Amélioration variétale de Coffea canephora. I. Critères et méthodes de sélection. Plant Rech Dév 5:18–33

    Google Scholar 

  • Montagnon C, Leroy T, Eskes A (1998b) Amélioration variétale de Coffea canephora. 2: les programmes de sélection et leurs résultats. Plant Rech Dév 5:89–98

    Google Scholar 

  • Montagnon C, Leroy T, Kébé IS, Eskes A (1994) Importance de la rouille orangée et facteurs impliqués dans l’évaluation de la résistance au champ de Coffea canephora en Côte-d’Ivoire. Cafe Cacao Thé 38:103–112

    Google Scholar 

  • Montagnon C, Leroy T, Yapo A (1992) Diversité génotypique et phénotypique de quelques groupes de caféiers (Coffea canephora Pierre) en collection. Conséquences sur leur utilisation en sélection. Cafe Cacao Thé 36:187–198

    Google Scholar 

  • Mrode RA (2014) Linear models for the prediction of animal breeding values (3rd ed.). Wallingford, UK: CABI Publishing. https://doi.org/10.1079/9781780643915.0000.

  • Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra I, Villeneuve P, Pina M, Ritter E (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (HBK) Cortés. PLoS ONE 9(5):e95412

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustiga GM, Gezan SA, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Motamayor JC (2018) Phenotypic description of Theobroma cacao L. for yield and vigor traits from 34 hybrid families in Costa Rica based on the genetic basis of the parental population. Front Plant Sci 9:808

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeau S, Beaulieu J, Gezan SA et al. (2023) Increasing genomic prediction accuracy for unphenotyped full-sib families by modeling additive and dominance effects with large datasets in white spruce. Front Plant Sci 14:1137834

    Article  PubMed  PubMed Central  Google Scholar 

  • Ovalle-Rivera O, Läderach P, Bunn C et al. (2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 10:e0124155

    Article  PubMed  PubMed Central  Google Scholar 

  • Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR Statistical Package. Genetics 198:483–495. https://doi.org/10.1534/genetics.114.164442

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash NS (2018) Developing varieties of Robusta coffee BT—achieving sustainable cultivation of coffee. Burleigh Dodds Science Publishing, pp 133–156. Cambridge, UK: Burleigh Dodds Science Publishing. https://doi.org/10.19103/AS.2017.0026.12.

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha RB, Suela MS, Comerio M, Riva-Souza EM, Senra JFB, Ferrão MAG, Ferrão RG, Almeida da Fonseca AFA, Verdin Filho AC, Volpi PS, Ferrão LFV (2025) Genomic-assisted selection to guide mate allocation and leverage hybrid vigor in Coffea canephora. Tree Genet Genomes & Genomes. https://doi.org/10.1007/s11295-025-01705-w.

  • Sousa TV, Caixeta ET, Alkimim ER et al. (2019) Early selection enabled by the implementation of genomic selection in Coffea arabica breeding. Front Plant Sci 9:1934

    Article  PubMed  PubMed Central  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A(2002) Bayesian measures of model complexity and fit J R Stat Soc Ser B Stat Methodol 64:583–639. https://doi.org/10.1111/1467-9868.00353

    Article  Google Scholar 

  • Tournebize R, Borner L, Manel S et al. (2022) Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora). Glob Chang Biol 28:4124–4142

    Article  CAS  PubMed  Google Scholar 

  • Vanden Abeele S, Janssens SB, Asimonyio Anio J et al. (2021) Genetic diversity of wild and cultivated Coffea canephora in northeastern DR Congo and the implications for conservation. Am J Bot 108:2425–2434

    Article  PubMed  PubMed Central  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Vi T, Vigouroux Y, Cubry P et al. (2023) Genome-wide admixture mapping identifies wild ancestry-of-origin segments in cultivated Robusta coffee. Genome Biol Evol 15:evad065

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitezica ZG, Varona L, Legarra A (2013) On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics 195:1223–1230. https://doi.org/10.1534/genetics.113.155176

    Article  PubMed  PubMed Central  Google Scholar 

  • Verleysen L, Bollen R, Kambale JL, Ebele T, Katshela BN, Depecker J, Poncet V, Assumani DM, Vandelook F, Stoffelen P, Honnay O (2023) Characterization of the genetic composition and establishment of a core collection for the INERA Robusta coffee (Coffea canephora) field genebank from the Democratic Republic of Congo. Front Sustain Food Syst 7:1239442

    Article  Google Scholar 

  • Zaidan IR, Ferreira A, Noia LR et al. (2023) Diversity and structure of Coffea canephora from old seminal crops in Espírito Santo, Brazil: genetic resources for coffee breeding. Tree Genet Genomes 19:19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Agricultural Research Center of the Ivory Coast (CNRA). Additional support was provided by the University of Florida and RD2 Vision Coffee Company.

Author information

Authors and Affiliations

Authors

Contributions

L.F.V.F., D.P., and C.M. conceived, designed, and supervised this study; D.P., K.O., and H.L. designed the field and laboratory experiments; L.F.V.F. and M.M.S. analyzed the data; C.M. provided expertise in population genetics; L.F.V.F., C.M., M.M.S., and D.P. wrote the paper. The authors provided edits and comments on the manuscript and have approved the current version.

Corresponding author

Correspondence to Luis Felipe V. Ferrão.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate editor: Sebastián Ramos-Onsins.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokou, N.D., Gba, K.M.K., Legnate, H. et al. Genomic insights into population structure and predictive breeding for climate-resilient coffee. Heredity 134, 695–704 (2025). https://doi.org/10.1038/s41437-025-00810-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41437-025-00810-9

Search

Quick links