Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Obstructive sleep apnea and hypertension-mediated organ damage in nonresistant and resistant hypertension

Abstract

The potential role of obstructive sleep apnea (OSA) in hypertension-mediated organ damage (HMOD) may be influenced by the presence of resistant hypertension (RH). Herein, we enrolled patients with hypertension from a tertiary center for clinical evaluation and performed a sleep study to identify OSA (apnea-hypopnea index ≥15 events/h) and a blinded analysis of four standard HMOD parameters (left ventricular hypertrophy [LVH], increased arterial stiffness [≥10 m/s], presence of retinopathy, and nephropathy). RH was diagnosed based on uncontrolled blood pressure (BP) (≥140/90 mmHg) despite concurrent use of at least three antihypertensive drug classes or controlled BP with concurrent use of ≥4 antihypertensive drug classes at optimal doses. To avoid the white-coat effect, ambulatory BP monitoring was performed to confirm RH diagnosis. One-hundred patients were included in the analysis (mean age: 54 ± 8 years, 65% females, body mass index: 30.4 ± 4.5 kg/m²). OSA was detected in 52% of patients. Among patients with non-RH (n = 53), the presence of OSA (52.8%) was not associated with an increased frequency of HMOD. Conversely, among patients with RH, OSA (51.1%) was associated with a higher incidence of LVH (RH-OSA,61%; RH + OSA,87%; p = 0.049). Logistic regression analysis using the total sample revealed that RH (OR:7.89; 95% CI:2.18–28.52; p = 0.002), systolic BP (OR:1.04; 95% CI:1.00–1.07; p = 0.042) and OSA (OR:4.31; 95% CI:1.14–16.34; p = 0.032) were independently associated with LVH. No significant association was observed between OSA and arterial stiffness, retinopathy, or nephropathy. In conclusion, OSA is independently associated with LVH in RH, suggesting a potential role of OSA in RH prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62:569–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tufik S, Santos-Silva R, Taddei JA, Bittencourt LR. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010;11:441–6.

    Article  PubMed  Google Scholar 

  3. Drager LF, Santos RB, Silva WA, Parise BK, Giatti S, Aielo AN, et al. OSA, Short Sleep Duration, and Their Interactions With Sleepiness and Cardiometabolic Risk Factors in Adults: The ELSA-Brasil Study. Chest. 2019;155:1190–8.

    Article  PubMed  Google Scholar 

  4. Sjostrom C, Lindberg E, Elmasry A, Hagg A, Svardsudd K, Janson C. Prevalence of sleep apnoea and snoring in hypertensive men: a population based study. Thorax. 2002;57:602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Drager LF, Genta PR, Pedrosa RP, Nerbass FB, Gonzaga CC, Krieger EM, et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am J Cardiol. 2010;105:1135–9.

    Article  PubMed  Google Scholar 

  6. Logan AG, Perlikowski SM, Mente A, Tisler A, Tkacova R, Niroumand M, et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J Hypertens. 2001;19:2271–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58:811–7.

    Article  CAS  PubMed  Google Scholar 

  8. Drager LF, Bortolotto LA, Figueiredo AC, Silva BC, Krieger EM, Lorenzi-Filho G. Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling. Chest. 2007;131:1379–86.

    Article  PubMed  Google Scholar 

  9. Ogilvie RP, Genuardi MV, Magnani JW, Redline S, Daviglus ML, Shah N, et al. Association Between Sleep Disordered Breathing and Left Ventricular Function: A Cross-Sectional Analysis of the ECHO-SOL Ancillary Study. Circ Cardiovasc Imaging. 2020;13:e009074.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roca GQ, Redline S, Claggett B, Bello N, Ballantyne CM, Solomon SD, et al. Sex-Specific Association of Sleep Apnea Severity With Subclinical Myocardial Injury, Ventricular Hypertrophy, and Heart Failure Risk in a Community-Dwelling Cohort: The Atherosclerosis Risk in Communities-Sleep Heart Health Study. Circulation. 2015;132:1329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sekizuka H, Osada N, Akashi YJ. Impact of obstructive sleep apnea and hypertension on left ventricular hypertrophy in Japanese patients. Hypertens Res. 2017;40:477–82.

    Article  PubMed  Google Scholar 

  12. Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Targeting Concentric Left Ventricular Hypertrophy in Obstructive Sleep Apnea Syndrome. A Meta-analysis of Echocardiographic Studies. Am J Hypertens. 2020;33:310–5.

    Article  PubMed  Google Scholar 

  13. Cuspidi C, Tadic M, Gherbesi E, Sala C, Grassi G. Targeting subclinical organ damage in obstructive sleep apnea: a narrative review. J Hum Hypertens. 2021;35:26–36.

    Article  PubMed  Google Scholar 

  14. American Diabetes A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S13–S28.

    Article  Google Scholar 

  15. Nobre F, Mion-Júnior D, Gomes MAM, Barbosa ECD, Rodrigues CIS, Neves MFT, et al. 6ª Diretrizes de Monitorização Ambulatorial da Pressão Arterial e 4ª Diretrizes de Monitorização Residencial da Pressão Arterial. Arquivos Brasileiros de Cardiologia. 2018;110:1–29.

    Article  Google Scholar 

  16. Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ. 1995;311:158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coelho HJJ, Sampaio RA, Goncalvez IO, Aguiar SD, Palmeira R, Oliveira JF, et al. Cutoffs and cardiovascular risk factors associated with neck circumference among community-dwelling elderly adults: a cross-sectional study. Sao Paulo Med J. 2016;134:519–27.

    Article  PubMed  Google Scholar 

  18. Genta-Pereira DC, Furlan SF, Omote DQ, Giorgi DMA, Bortolotto LA, Lorenzi-Filho G, et al. Nondipping Blood Pressure Patterns Predict Obstructive Sleep Apnea in Patients Undergoing Ambulatory Blood Pressure Monitoring. Hypertension. 2018;72:979–85.

    Article  CAS  PubMed  Google Scholar 

  19. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75:1334–57.

    Article  CAS  PubMed  Google Scholar 

  20. Carey RM, Calhoun DA, Bakris GL, Brook RD, Daugherty SL, Dennison-Himmelfarb CR, et al. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association. Hypertension. 2018;72:e53–e90.

    Article  CAS  PubMed  Google Scholar 

  21. Yugar-Toledo JC, Moreno Junior H, Gus M, Rosito GBA, Scala LCN, Muxfeldt ES, et al. Brazilian Position Statement on Resistant Hypertension - 2020. Arq Bras Cardiol. 2020;114:576–96.

    PubMed  PubMed Central  Google Scholar 

  22. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.

    Article  PubMed  Google Scholar 

  23. Manovel A, Dawson D, Smith B, Nihoyannopoulos P. Assessment of left ventricular function by different speckle-tracking software. Eur J Echocardiogr. 2010;11:417–21.

    Article  PubMed  Google Scholar 

  24. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30:445–8.

    Article  PubMed  Google Scholar 

  25. Reference Values for Arterial Stiffness C. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31:2338–50.

    Article  Google Scholar 

  26. Wong TY, Mitchell P. Hypertensive retinopathy. N Engl J Med. 2004;351:2310–17.

    Article  CAS  PubMed  Google Scholar 

  27. Lustgarten JA, Wenk RE. Simple, rapid, kinetic method for serum creatinine measurement. Clin Chem. 1972;18:1419–22.

    Article  CAS  PubMed  Google Scholar 

  28. Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, et al. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis. 2002;39:920–9.

    Article  CAS  PubMed  Google Scholar 

  29. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Earley A, Miskulin D, Lamb EJ, Levey AS, Uhlig K. Estimating equations for glomerular filtration rate in the era of creatinine standardization: a systematic review. Ann Intern Med. 2012;156:785–95.

    Article  PubMed  Google Scholar 

  31. Zanocco JA, Nishida SK, Passos MT, Pereira AR, Silva MS, Pereira AB, et al. Race adjustment for estimating glomerular filtration rate is not always necessary. Nephron Extra. 2012;2:293–302.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80:17–28.

    Article  PubMed  Google Scholar 

  33. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34:2159–219.

    Article  PubMed  Google Scholar 

  34. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8:597–619.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chowdhuri S, Quan SF, Almeida F, Ayappa I, Batool-Anwar S, Budhiraja R, et al. An Official American Thoracic Society Research Statement: Impact of Mild Obstructive Sleep Apnea in Adults. Am J Respir Crit Care Med. 2016;193:e37–54.

    Article  PubMed  Google Scholar 

  36. Grossi M, Riccò B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J Sens Sens Syst. 2017;6:303–25.

    Article  Google Scholar 

  37. O’Rourke MF, Gallagher DE. Pulse wave analysis. J Hypertens. 1996;14:S147–S157.

    Google Scholar 

  38. Team RC. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 2020.

  39. Cuspidi C, Tadic M, Sala C, Gherbesi E, Grassi G, Mancia G. Obstructive sleep apnoea syndrome and left ventricular hypertrophy: a meta-analysis of echocardiographic studies. J Hypertens. 2020;38:1640–9.

    Article  CAS  PubMed  Google Scholar 

  40. Sim JJ, Bhandari SK, Shi J, Reynolds K, Calhoun DA, Kalantar-Zadeh K, et al. Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension. Kidney Int. 2015;88:622–32.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bradley TD, Hall MJ, Ando S, Floras JS. Hemodynamic effects of simulated obstructive apneas in humans with and without heart failure. Chest. 2001;119:1827–35.

    Article  CAS  PubMed  Google Scholar 

  42. Bradley TD, Floras JS. Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation. 2003;107:1671–8.

    Article  PubMed  Google Scholar 

  43. Drager LF, Bortolotto LA, Lorenzi MC, Figueiredo AC, Krieger EM, Lorenzi-Filho G. Early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2005;172:613–8.

    Article  PubMed  Google Scholar 

  44. Doonan RJ, Scheffler P, Lalli M, Kimoff RJ, Petridou ET, Daskalopoulos ME, et al. Increased arterial stiffness in obstructive sleep apnea: a systematic review. Hypertens Res. 2011;34:23–32.

    Article  PubMed  Google Scholar 

  45. Joyeux-Faure M, Tamisier R, Borel JC, Millasseau S, Galerneau LM, Destors M, et al. Contribution of obstructive sleep apnoea to arterial stiffness: a meta-analysis using individual patient data. Thorax. 2018;73:1146–51.

    Article  PubMed  Google Scholar 

  46. Fatureto-Borges F, Jenner R, Costa-Hong V, Lopes HF, Teixeira SH, Marum E, et al. Does Obstructive Sleep Apnea Influence Blood Pressure and Arterial Stiffness in Response to Antihypertensive Treatment? Hypertension. 2018;72:399–407.

    Article  CAS  PubMed  Google Scholar 

  47. Tsioufis C, Thomopoulos C, Dimitriadis K, Amfilochiou A, Tsiachris D, Selima M, et al. Association of obstructive sleep apnea with urinary albumin excretion in essential hypertension: a cross-sectional study. Am J Kidney Dis. 2008;52:285–93.

    Article  PubMed  Google Scholar 

  48. Koga S, Ikeda S, Nakata T, Yasunaga T, Maemura K. Effects of nasal continuous positive airway pressure on left ventricular concentric hypertrophy in obstructive sleep apnea syndrome. Intern Med. 2012;51:2863–8.

    Article  PubMed  Google Scholar 

  49. Cloward TV, Walker JM, Farney RJ, Anderson JL. Left ventricular hypertrophy is a common echocardiographic abnormality in severe obstructive sleep apnea and reverses with nasal continuous positive airway pressure. Chest. 2003;124:594–601.

    Article  PubMed  Google Scholar 

  50. Yugar-Toledo JC, Brunelli V, Vilela-Martin JF, Fattori A, Moreno H. Controlled Versus Uncontrolled Resistant Hypertension: Are They in the Same Bag? Curr Hypertens Rep. 2018;20:26.

    Article  CAS  PubMed  Google Scholar 

  51. Osterberg L, Blaschke T. Adherence to medication. N Engl J Med. 2005;353:487–97.

    Article  CAS  PubMed  Google Scholar 

  52. Sapina-Beltran E, Torres G, Martinez-Alonso M, Sanchez-de-la-Torre M, Franch M, Bravo C, et al. Rationale and Methodology of the SARAH Trial: Long-Term Cardiovascular Outcomes in Patients With Resistant Hypertension and Obstructive Sleep Apnea. Arch Bronconeumol. 2018;54:518–23.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients included in this study.

Funding

This work was supported by a research grant from FAPESP (2019/23496-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano F. Drager.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrini, M.L., Macedo, T.A., Castro, E. et al. Obstructive sleep apnea and hypertension-mediated organ damage in nonresistant and resistant hypertension. Hypertens Res 46, 2033–2043 (2023). https://doi.org/10.1038/s41440-023-01320-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-023-01320-z

Keywords

This article is cited by

Search

Quick links