Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Special Issue: Current evidence and perspectives for hypertension management in Asia
  • Published:

Associations of total homocysteine and kidney function with all-cause and cause-specific mortality in hypertensive patients: a mediation and joint analysis

A Comment to this article was published on 15 May 2024

Abstract

Plasma total homocysteine (tHcy) and kidney function are both associated with mortality risk, but the degree to which kidney function modifies the impact of tHcy on mortality remains unknown. This prospective cohort study included a total of 14,225 hypertensive adults. Cox proportional hazard regression was used to analyze the separate and combined association of tHcy and estimated glomerular filtration rate (eGFR) with all-cause and cause-specific mortality. Mediation analysis was conducted to explore the mediating effect of eGFR. During a median follow-up of 4.0 years, 805 deaths were identified, including 397 deaths from cardiovascular disease (CVD). There were significant, positive relationships of tHcy with all-cause mortality (per 5 μmol/L; HR: 1.09; 95% CI: 1.07, 1.11), CVD mortality (HR: 1.11; 95% CI: 1.08, 1.13), and non-CVD mortality (HR: 1.07; 95% CI: 1.04, 1.10). The proportions of eGFR mediating these relationships were 39.1%, 35.7%, and 49.7%, respectively. There were additive interactions between tHcy and eGFR. Compared with those with low tHcy (<15 μmol/L) and high eGFR (≥90 mL·min−1·1.73 m−2), participants with high tHcy (≥20 μmol/L) and low eGFR (<60 mL·min−1·1.73 m−2) had the highest risk of all-cause mortality (HR: 4.89; 95% CI: 3.81, 6.28), CVD mortality (HR: 5.80; 95% CI: 4.01, 8.40), and non-CVD mortality (HR: 4.25; 95% CI: 3.02, 5.97). In conclusion, among Chinese hypertensive adults, high tHcy and impaired kidney function were independently and jointly associated with higher risks of all-cause and cause-specific mortality. Importantly, kidney function explained most (nearly 40%) of the increased risk of mortality conferred by high tHcy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389:37–55.

    Article  Google Scholar 

  2. Lewington S, Lacey B, Clarke R, Guo Y, Kong XL, Yang L, et al. The burden of hypertension and associated risk for cardiovascular mortality in China. JAMA Intern Med. 2016;176:524–32.

    Article  PubMed  Google Scholar 

  3. Towfighi A, Markovic D, Ovbiagele B. Pronounced association of elevated serum homocysteine with stroke in subgroups of individuals: a nationwide study. J Neurol Sci. 2010;298:153–7.

    Article  CAS  PubMed  Google Scholar 

  4. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999;354:407–13.

    Article  CAS  PubMed  Google Scholar 

  6. Clarke R, Collins R, Lewington S, Donald A, Alfthan G, Tuomilehto J, et al. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002;288:2015–22.

    Article  CAS  Google Scholar 

  7. Yuan S, Mason AM, Carter P, Burgess S, Larsson SC. Homocysteine, B vitamins, and cardiovascular disease: a Mendelian randomization study. BMC Med. 2021;19:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang S, Li J, Zhang Y, Venners SA, Tang G, Wang Y, et al. Methylenetetrahydrofolate reductase C677T polymorphism, hypertension and risk of stroke: a prospective, nested case-control study. Int J Neurosci. 2017;127:253–60.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Jiang S, Zhang Y, Tang G, Wang Y, Mao G, et al. H-type hypertension and risk of stroke in Chinese adults: A prospective, nested case-control study. J Transl Int Med. 2015;3:171–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tu W, Yan F, Chao B, Ji X, Wang L. Status of hyperhomocysteinemia in China: results from the China Stroke High-risk Population Screening Program, 2018. Front Med. 2021;15:903–12.

    Article  PubMed  Google Scholar 

  11. Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020;395:709–33.

    Article  Google Scholar 

  12. Cianciolo G, De Pascalis A, Di Lullo L, Ronco C, Zannini C, La Manna G. Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First? Cardiorenal Med. 2017;7:255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi Y, Ding C, Hu L, Li M, Huang X, Zhou W, et al. Saturation Effects of Plasma Homocysteine on Chronic Kidney Disease in Chinese Adults With H-type Hypertension: A Cross-sectional Study. J Ren Nutr. 2021;31:459–66.

    Article  CAS  PubMed  Google Scholar 

  14. Park S, Lee S, Kim Y, Cho S, Kim K, Kim YC, et al. Causal Effects of Homocysteine, Folate, and Cobalamin on Kidney Function: A Mendelian Randomization Study. Nutrients 2021;13:906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Menon V, Wang X, Greene T, Beck GJ, Kusek JW, Selhub J, et al. Homocysteine in chronic kidney disease: Effect of low protein diet and repletion with B vitamins. Kidney Int. 2005;67:1539–46.

    Article  CAS  PubMed  Google Scholar 

  16. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–69.

    Article  PubMed  Google Scholar 

  17. Shi Z, Guan Y, Huo YR, Liu S, Zhang M, Lu H, et al. Elevated Total Homocysteine Levels in Acute Ischemic Stroke Are Associated With Long-Term Mortality. Stroke. 2015;46:2419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337:230–6.

    Article  CAS  PubMed  Google Scholar 

  19. Hoogeveen EK, Kostense PJ, Jakobs C, Dekker JM, Nijpels G, Heine RJ, et al. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn Study. Circulation. 2000;101:1506–11.

    Article  CAS  PubMed  Google Scholar 

  20. Lu J, Chen K, Chen W, Liu C, Jiang X, Ma Z, et al. Association of Serum Homocysteine with Cardiovascular and All-Cause Mortality in Adults with Diabetes: A Prospective Cohort Study. Oxid Med Cell Longev. 2022;2022:2156483.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dangour AD, Breeze E, Clarke R, Shetty PS, Uauy R, Fletcher AE. Plasma homocysteine, but not folate or vitamin B-12, predicts mortality in older people in the United Kingdom. J Nutr. 2008;138:1121–8.

    Article  CAS  PubMed  Google Scholar 

  22. Xiu LL, Lee MS, Wahlqvist ML, Chen RC, Huang YC, Chen KJ, et al. Low and high homocysteine are associated with mortality independent of B group vitamins but interactive with cognitive status in a free-living elderly cohort. Nutr Res. 2012;32:928–39.

    Article  CAS  PubMed  Google Scholar 

  23. Mendonca N, Jagger C, Granic A, Martin-Ruiz C, Mathers JC, Seal CJ, et al. Elevated Total Homocysteine in All Participants and Plasma Vitamin B12 Concentrations in Women Are Associated With All-Cause and Cardiovascular Mortality in the Very Old: The Newcastle 85+ Study. J Gerontol A Biol Sci Med Sci. 2018;73:1258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vollset SE, Refsum H, Tverdal A, Nygard O, Nordrehaug JE, Tell GS, et al. Plasma total homocysteine and cardiovascular and noncardiovascular mortality: the Hordaland Homocysteine Study. Am J Clin Nutr. 2001;74:130–6.

    Article  CAS  PubMed  Google Scholar 

  25. Waskiewicz A, Sygnowska E, Broda G. Homocysteine concentration and the risk of death in the adult Polish population. Kardiol Pol. 2012;70:897–902.

    PubMed  Google Scholar 

  26. Mo T, Long P, Wang Y, Peng R, Niu R, Wang Q, et al. Genetic susceptibility, homocysteine levels, and risk of all-cause and cause-specific mortality: A prospective cohort study. Clin Chim Acta. 2023;538:1–8.

    Article  CAS  PubMed  Google Scholar 

  27. Menon V, Sarnak MJ, Greene T, Wang X, Pereira AA, Beck GJ, et al. Relationship between homocysteine and mortality in chronic kidney disease. Circulation. 2006;113:1572–7.

    Article  CAS  PubMed  Google Scholar 

  28. Looker HC, Fagot-Campagna A, Gunter EW, Pfeiffer CM, Sievers ML, Bennett PH, et al. Homocysteine and vitamin B(12) concentrations and mortality rates in type 2 diabetes. Diabetes Metab Res Rev. 2007;23:193–201.

    Article  CAS  PubMed  Google Scholar 

  29. Li M, Zhan A, Huang X, Hu L, Zhou W, Wang T, et al. Positive association between triglyceride glucose index and arterial stiffness in hypertensive patients: the China H-type Hypertension Registry Study. Cardiovasc Diabetol. 2020;19:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Valeri L, Vanderweele TJ. Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with SAS and SPSS macros. Psychol Methods. 2013;18:137–50.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li R, Chambless L. Test for additive interaction in proportional hazards models. Ann Epidemiol. 2007;17:227–36.

    Article  PubMed  Google Scholar 

  33. Xu B, Kong X, Xu R, Song Y, Liu L, Zhou Z, et al. Homocysteine and all-cause mortality in hypertensive adults without pre-existing cardiovascular conditions: Effect modification by MTHFR C677T polymorphism. Medicine. 2017;96:e5862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338:1042–50.

    Article  CAS  PubMed  Google Scholar 

  35. Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation. 2001;104:2569–75.

    Article  CAS  PubMed  Google Scholar 

  36. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, et al. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain. 2003;126:170–5.

    Article  Google Scholar 

  37. Hasan T, Arora R, Bansal AK, Bhattacharya R, Sharma GS, Singh LR. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med. 2019;51:1–13.

    Article  PubMed  Google Scholar 

  38. Herrmann M, Peter Schmidt J, Umanskaya N, Wagner A, Taban-Shomal O, Widmann T, et al. The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review. Clin Chem Lab Med. 2007;45:1621–32.

    Article  CAS  PubMed  Google Scholar 

  39. Yang J, Hu X, Zhang Q, Cao H, Wang J, Liu B. Homocysteine level and risk of fracture: A meta-analysis and systematic review. Bone. 2012;51:376–82.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao W, Gao F, Lv L, Chen X. The interaction of hypertension and homocysteine increases the risk of mortality among middle-aged and older population in the United States. J Hypertens. 2022;40:254–63.

    Article  CAS  PubMed  Google Scholar 

  41. Zhou F, Liu C, Ye L, Wang Y, Shao Y, Zhang G, et al. The Relative Contribution of Plasma Homocysteine Levels vs. Traditional Risk Factors to the First Stroke: A Nested Case-Control Study in Rural China. Front Med. 2021;8:727418.

    Article  Google Scholar 

  42. Swart KM, van Schoor NM, Blom HJ, Smulders YM, Lips P. Homocysteine and the risk of nursing home admission and mortality in older persons. Eur J Clin Nutr. 2012;66:188–95.

    Article  CAS  PubMed  Google Scholar 

  43. Fan R, Zhang A, Zhong F. Association between Homocysteine Levels and All-cause Mortality: A Dose-Response Meta-Analysis of Prospective Studies. Sci Rep. 2017;7:4769.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005;308:1583–7.

    Article  CAS  PubMed  Google Scholar 

  45. Yi F, Li PL. Mechanisms of homocysteine-induced glomerular injury and sclerosis. Am J Nephrol. 2008;28:254–64.

    Article  CAS  PubMed  Google Scholar 

  46. Fox CS, Gona P, Larson MG, Selhub J, Tofler G, Hwang SJ, et al. A multi-marker approach to predict incident CKD and microalbuminuria. J Am Soc Nephrol. 2010;21:2143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jardine MJ, Kang A, Zoungas S, Navaneethan SD, Ninomiya T, Nigwekar SU, et al. The effect of folic acid based homocysteine lowering on cardiovascular events in people with kidney disease: systematic review and meta-analysis. BMJ. 2012;344:e3533.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu X, Qin X, Li Y, Sun D, Wang J, Liang M, et al. Efficacy of Folic Acid Therapy on the Progression of Chronic Kidney Disease: The Renal Substudy of the China Stroke Primary Prevention Trial. JAMA Intern Med. 2016;176:1443–50.

    Article  PubMed  Google Scholar 

  49. Al-Aly Z, Zeringue A, Fu J, Rauchman MI, McDonald JR, El-Achkar TM, et al. Rate of kidney function decline associates with mortality. J Am Soc Nephrol. 2010;21:1961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Midttun O, Theofylaktopoulou D, McCann A, Fanidi A, Muller DC, Meyer K, et al. Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am J Clin Nutr. 2017;105:1314–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thank you to Dr. Xiping Xu from the Shenzhen Evergreen Medical Institute, who provided critical insights in the early stages of the work.

Funding

This study was supported by funding from the following: Cultivation of backup projects for National Science and Technology Awards (20223AEI91007), Jiangxi Science and Technology Innovation Base Plan - Jiangxi Clinical Medical Research Center (20223BCG74012), Science and Technology Innovation Base Construction Project (20221ZDG02010), Jiangxi Provincial Natural Science Foundation (20212ACB206019, 20224BAB206090, 20232BAB206140), Fund project of the Second Affiliated Hospital of Nanchang University (2021efyA01, 2022YNFY2017).

Author information

Authors and Affiliations

Authors

Contributions

CD: study concept and design, acquisition of data, data analysis, data interpretation, drafting of the manuscript, and revision of the manuscript for important intellectual content. JL, YW, WF, TC, ZC, YS, CY, TY, PZ, WZ, CY, TW and LZ: acquisition of data, critical review and revision of the manuscript for important intellectual content. XH, HB and XC: study concept and design, acquisition of data, data management, critical review and revision of the manuscript for important intellectual content.

Corresponding authors

Correspondence to Xiao Huang, Huihui Bao or Xiaoshu Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Li, J., Wei, Y. et al. Associations of total homocysteine and kidney function with all-cause and cause-specific mortality in hypertensive patients: a mediation and joint analysis. Hypertens Res 47, 1500–1511 (2024). https://doi.org/10.1038/s41440-024-01613-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01613-x

Keywords

This article is cited by

Search

Quick links