Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Construction of a pathway-level model for preeclampsia based on gene expression data

Abstract

Preeclampsia (PE) is a heterogeneous disease that seriously affects the health of mothers and fetuses. Lack of detection assays, its diagnosis and intervention are often delayed when the clinical symptoms are atypical. Using personalized pathway-based analysis and machine learning algorithms, we built a PE diagnosis model consisting of nine core pathways using multiple cohorts from the Gene Expression Omnibus database. The model showed an area under the receiver operating characteristic (AUROC) curve of 0.959 with the data from the placental tissue samples in the development cohort. In the two validation cohorts, the AUROCs were 0.898 and 0.876, respectively. The model also performed well with the maternal plasma data in another validation cohort (AUROC: 0.815). Moreover, we identified tyrosine-protein kinase Lck (LCK) as the hub gene in this model and found that LCK and pLCK proteins were downregulated in placentas from PE patients. The pathway-level model for PE can provide a novel direction to develop molecular diagnostic assay and investigate potential mechanisms of PE in future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The gene expression data used in the present study are publicly available in the GEO database (http://www.ncbi.nlm.nih.gov/geo).

References

  1. Chappell LC, Cluver CA, Kingdom J, Tong S. Pre-eclampsia. Lancet. 2021;398:341–54.

    Article  CAS  PubMed  Google Scholar 

  2. Duhig KE, Myers J, Seed PT, Sparkes J, Lowe J, Hunter RM, et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet. 2019;393:1807–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fox A, McHugh S, Browne J, Kenny LC, Fitzgerald A, Khashan AS, et al. Estimating the Cost of Preeclampsia in the Healthcare System: Cross-Sectional Study Using Data From SCOPE Study (Screening for Pregnancy End Points). Hypertension. 2017;70:1243–9.

    Article  CAS  PubMed  Google Scholar 

  4. Navajas R, Corrales F, Paradela A. Quantitative proteomics-based analyses performed on pre-eclampsia samples in the 2004-2020 period: a systematic review. Clin Proteom. 2021;18:6.

    Article  CAS  Google Scholar 

  5. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145:1–33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gupta S, Arango-Argoty G, Zhang L, Pruden A, Vikesland P. Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm. Microbiome. 2019;7:123.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, et al. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat Rev Cancer. 2008;8:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilms M, Handels H, Ehrhardt J. Multi-resolution multi-object statistical shape models based on the locality assumption. Med Image Anal. 2017;38:17–29.

    Article  PubMed  Google Scholar 

  9. Vinga S. Structured sparsity regularization for analyzing high-dimensional omics data. Brief Bioinform. 2021;22:77–87.

    Article  PubMed  Google Scholar 

  10. Wu K, Liu J, Wang S. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization. Sci Rep. 2016;6:37771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park KS, Kim SH, Oh JH, Kim SY. Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning. Brief Bioinform. 2021;22:bbaa336.

    Article  PubMed  Google Scholar 

  12. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B. 2005;67:301–20.

    Article  Google Scholar 

  14. Glaab E. Using prior knowledge from cellular pathways and molecular networks for diagnostic specimen classification. Brief Bioinform. 2016;17:440–52.

    Article  CAS  PubMed  Google Scholar 

  15. Drier Y, Sheffer M, Domany E. Pathway-based personalized analysis of cancer. Proc Natl Acad Sci USA. 2013;110:6388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magee LA, Brown MA, Hall DR, Gupte S, Hennessy A, Karumanchi SA, et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022;27:148–69.

    Article  PubMed  Google Scholar 

  18. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37:D674–9.

    Article  CAS  PubMed  Google Scholar 

  20. Nishimura D. Biotech Software & Internet Report. Open Access Libr. 2001;2:117–20.

    Google Scholar 

  21. Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D92.

    Article  CAS  PubMed  Google Scholar 

  22. Sill M, Hielscher T, Becker N, Zucknick M. c060: Extended Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear Models. J Stat Softw. 2014;62:1–22.

    Article  Google Scholar 

  23. Hernández-Orallo J, Flach P, Ferri C. A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res. 2012;13:2813–69.

    Google Scholar 

  24. DeVries Z, Locke E, Hoda M, Moravek D, Phan K, Stratton A, et al. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine J. 2021;21:1135–42.

    Article  PubMed  Google Scholar 

  25. Rahmatallah Y, Zybailov B, Emmert-Streib F, Glazko G. GSAR: Bioconductor package for Gene Set analysis in R. BMC Bioinforma. 2017;18:61.

    Article  Google Scholar 

  26. Rahmatallah Y, Emmert-Streib F, Glazko G. Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics. 2014;30:360–8.

    Article  CAS  PubMed  Google Scholar 

  27. He A, Wang J, Yang X, Liu J, Yang X, Wang G, et al. Screening of differentially expressed proteins in placentas from patients with late-onset preeclampsia. Proteom Clin Appl. 2022;16:e2100053.

    Article  Google Scholar 

  28. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  30. Leavey K, Benton SJ, Grynspan D, Bainbridge SA, Morgen EK, Cox BJ. Gene markers of normal villous maturation and their expression in placentas with maturational pathology. Placenta. 2017;58:52–9.

    Article  CAS  PubMed  Google Scholar 

  31. Guo L, Tsai SQ, Hardison NE, James AH, Motsinger-Reif AA, Thames B, et al. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta. 2013;34:599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leavey K, Wilson SL, Bainbridge SA, Robinson WP, Cox BJ. Epigenetic regulation of placental gene expression in transcriptional subtypes of preeclampsia. Clin Epigenetics. 2018;10:28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsai S, Hardison NE, James AH, Motsinger-Reif AA, Bischoff SR, Thames BH, et al. Transcriptional profiling of human placentas from pregnancies complicated by preeclampsia reveals disregulation of sialic acid acetylesterase and immune signalling pathways. Placenta. 2011;32:175–82.

    Article  CAS  PubMed  Google Scholar 

  34. Textoris J, Ivorra D, Ben Amara A, Sabatier F, Menard JP, Heckenroth H, et al. Evaluation of current and new biomarkers in severe preeclampsia: a microarray approach reveals the VSIG4 gene as a potential blood biomarker. PLoS One. 2013;8:e82638.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    Article  PubMed  Google Scholar 

  36. Zeisler H, Llurba E, Chantraine F, Vatish M, Staff AC, Sennstrom M, et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl J Med. 2016;374:13–22.

    Article  CAS  PubMed  Google Scholar 

  37. Gallo DM, Wright D, Casanova C, Campanero M, Nicolaides KH. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19-24 weeks’ gestation. Am J Obstet Gynecol. 2016;214:619.e1–17.

    Article  CAS  PubMed  Google Scholar 

  38. Benny PA, Alakwaa FM, Schlueter RJ, Lassiter CB, Garmire LX. A review of omics approaches to study preeclampsia. Placenta. 2020;92:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei Z, Zhang Y, Weng W, Chen J, Cai H. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets. Brief Bioinform. 2021;22:bbaa102.

    Article  PubMed  Google Scholar 

  40. Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10:e0118432.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yart L, Roset Bahmanyar E, Cohen M, Martinez de Tejada B. Role of the Uteroplacental Renin-Angiotensin System in Placental Development and Function, and Its Implication in the Preeclampsia Pathogenesis. Biomedicines. 2021;9:1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saei H, Govahi A, Abiri A, Eghbali M, Abiri M. Comprehensive transcriptome mining identified the gene expression signature and differentially regulated pathways of the late-onset preeclampsia. Pregnancy Hypertens. 2021;25:91–102.

    Article  PubMed  Google Scholar 

  43. Huang Y, Zheng XD, Li H. Protective role of SIRT1-mediated Sonic Hedgehog signaling pathway in the preeclampsia rat models. J Assist Reprod Genet. 2021;38:1843–51.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Miller D, Motomura K, Galaz J, Gershater M, Lee ED, Romero R, et al. Cellular immune responses in the pathophysiology of preeclampsia. J Leukoc Biol. 2022;111:237–60.

    Article  CAS  PubMed  Google Scholar 

  45. He X, Zhao L, Yue L, Zhang W, Wang W, Fu Y, et al. The relationship between IGF1 and the expression spectrum of miRNA in the placenta of preeclampsia patients. Ginekol Pol. 2019;90:596–603.

    Article  PubMed  Google Scholar 

  46. Speake PF, Glazier JD, Ayuk PT, Reade M, Sibley CP, D’Souza SWL. -Arginine transport across the basal plasma membrane of the syncytiotrophoblast of the human placenta from normal and preeclamptic pregnancies. J Clin Endocrinol Metab. 2003;88:4287–92.

    Article  CAS  PubMed  Google Scholar 

  47. Nicola C, Lala PK, Chakraborty C. Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. Biol Reprod. 2008;78:976–82.

    Article  CAS  PubMed  Google Scholar 

  48. Saso J, Shields SK, Zuo Y, Chakraborty C. Role of Rho GTPases in human trophoblast migration induced by IGFBP1. Biol Reprod. 2012;86:1–9.

    Article  PubMed  Google Scholar 

  49. Wang H, Liu ML, Chu C, Yu SJ, Li J, Shen HC, et al. Paeonol alleviates placental inflammation and apoptosis in preeclampsia by inhibiting the JAK2/STAT3 signaling pathway. Kaohsiung J Med Sci. 2022;38:1103–12.

    Article  CAS  PubMed  Google Scholar 

  50. Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23:7990–8000.

    Article  CAS  PubMed  Google Scholar 

  51. Courtney AH, Amacher JF, Kadlecek TA, Mollenauer MN, Au-Yeung BB, Kuriyan J, et al. A Phosphosite within the SH2 Domain of Lck Regulates Its Activation by CD45. Mol Cell. 2017;67:498–511.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 2012;130:1144–52.e11.

    Article  CAS  PubMed  Google Scholar 

  53. Laresgoiti-Servitje E. A leading role for the immune system in the pathophysiology of preeclampsia. J Leukoc Biol. 2013;94:247–57.

    Article  CAS  PubMed  Google Scholar 

  54. Saito S, Tsuda S, Nakashima A. T cell immunity and the etiology and pathogenesis of preeclampsia. J Reprod Immunol. 2023;159:104125.

    Article  CAS  PubMed  Google Scholar 

  55. Ji ZS, Jiang H, Xie Y, Wei QP, Yin XF, Ye JH, et al. Chemerin promotes the pathogenesis of preeclampsia by activating CMKLR1/p-Akt/CEBPa axis and inducing M1 macrophage polarization. Cell Biol Toxicol. 2021. https://doi.org/10.1007/s10565-021-09636-7.

Download references

Acknowledgements

The authors thank all participants in this study, including those who donated placental tissues and those who provided sample data in the GEO database. The graphical abstract was created with BioRender (https://www.biorender.com/). In addition, the authors thank Beijing GAP BioTechnology Co., Ltd. for their assistance with the bioinformatics analysis.

Funding

This work was supported by grants from the Natural Science Foundation of Guangdong Province, China (No. 2023A1515012741), Clinical Frontier Technology Program of the First Affiliated Hospital of Jinan University, China (No. JNU1AF-CFTP-2022-a01209), and Research on the Mechanisms and Clinical Implications of Ferroptosis in Preeclampsia (No. 2023A03J1009). There was no role of the funding body in the study design, data collection and analysis, and manuscript writing.

Author information

Authors and Affiliations

Authors

Contributions

Ruiman Li, Feng Gao, Ruiling Yan, Qiao Zhang, Andong He, Daiqiang Lu, and Jia Liu designed the study. Andong He, Ka Cheuk Yip, Daiqiang Lu, Jia Liu, Zunhao Zhang, Xiufang Wang, Yifeng Liu, and Yiling Wei performed the analysis. Andong He and Ka Cheuk Yip wrote the manuscript. Ruiman Li, Feng Gao, Ruiling Yan, and Qiao Zhang assisted in revising the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiao Zhang, Ruiling Yan, Feng Gao or Ruiman Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Yip, K.C., Lu, D. et al. Construction of a pathway-level model for preeclampsia based on gene expression data. Hypertens Res 47, 2521–2531 (2024). https://doi.org/10.1038/s41440-024-01753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01753-0

Keywords

Search

Quick links