Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BMA-based Mendelian randomization identifies blood metabolites as causal candidates in pregnancy-induced hypertension

A Comment to this article was published on 16 August 2024

Abstract

Pregnancy-induced hypertension (PIH), a prominent determinant of maternal mortality and morbidity worldwide, is hindered by the absence of efficacious biomarkers for early diagnosis, contributing to suboptimal outcomes. Here, we explored potential causal relationships between blood metabolites and the risk of PIH using Mendelian randomization (MR). We employed a two-sample univariable MR approach to empirically estimate the causal relationships between 249 circulating metabolites and PIH. Inverse variance weighted, MR-egger, weight median, simple mode, and weighted mode methods were used for causal estimates. The exposure-to-outcome directionality was confirmed with the MR Steiger test. The Bayesian model averaging MR (MR-BMA) method was applied to detect the predominant causal metabolic traits with alignment for pleiotropy effects. In the primary analysis, analyzing 249 metabolites, we identified 25 causally linked to PIH, including 11 lipid-related traits and 6 associated with fatty acid (un)saturation. Importantly, MR-BMA analyses corroborated the total concentration of branched-chain amino acids(total-BCAA) to be the highest rank causal metabolite, followed by leucine (Leu), phospholipids to total lipids ratio in medium LDL (M-LDL-PL-pct), and Val (all P < 0.05). The directionality of causality predicted by univariable MR and MR-BMA for these metabolites remained consistent. This study highlights the causal connection between metabolites and PIH risk. It highlighted BCAAs as the strongest causal candidates warranting further investigation. Since PIH typically occurs in the second and third trimesters, extending these findings could inform earlier strategies to reduce its risk.

Directed acyclic graph of the MR framework investigating the causal relationship between metabolites and PIH. MR: Mendelian randomization; GIVs: genetic instrument variables; SNPs: single-nucleotide polymorphism; IVW: inverse variance weighted; WM: weighted median; PIH: pregnancy-induced hypertension; SM: significant metabolite; MR-BMA: Bayesian model averaging MR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ou M, Zhao H, Ji G, Zhao X, Zhang Q. Long noncoding RNA MALAT1 contributes to pregnancy-induced hypertension development by enhancing oxidative stress and inflammation through the regulation of the miR-150-5p/ET-1 axis. FASEB J. 2020;34:6070–85.

    Article  CAS  PubMed  Google Scholar 

  2. Wang R, Chen L, Wang X, Liu Y. Association between serum beta-human chorionic gonadotropin and inflammation, oxidative stress in pregnancy-induced hypertension. Microvasc Res. 2021;135:104130.

    Article  CAS  PubMed  Google Scholar 

  3. Wei W, Wang X, Zhou Y, Shang X, Yu H. The genetic risk factors for pregnancy-induced hypertension: evidence from genetic polymorphisms. FASEB J. 2022;36:e22413.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao A, Qi Y, Liu K. CLDN3 expression and function in pregnancy-induced hypertension. Exp Ther Med. 2020;20:3798–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kintiraki E, Papakatsika S, Kotronis G, Goulis DG, Kotsis V. Pregnancy-Induced hypertension. Hormones. 2015;14:211–23.

    Article  PubMed  Google Scholar 

  6. Webster K, Fishburn S, Maresh M, Findlay SC, Chappell LC. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ. 2019;366:l5119.

    Article  PubMed  Google Scholar 

  7. Qu H, Khalil RA. Vascular mechanisms and molecular targets in hypertensive pregnancy and preeclampsia. Am J Physiol Heart Circ Physiol. 2020;319:H661–h81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen A, Zhao H, Wang J, Zhang R, Liu J, Zhao X, et al. Haplotype analysis of candidate genes involved in inflammation and oxidative stress and the susceptibility to preeclampsia. J Immunol Res. 2020;2020:4683798.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yang J, Shang J, Zhang S, Li H, Liu H. The role of the renin-angiotensin-aldosterone system in preeclampsia: genetic polymorphisms and microRNA. J Mol Endocrinol. 2013;50:R53–66.

    Article  CAS  PubMed  Google Scholar 

  10. Liu Q, Wang XX, Zhang YK, Li JH, Wang L.Correlation between pregnancy-induced hypertension and age in pregnant women from Hebei province.Zhonghua Liu Xing Bing Xue Za Zhi. 2016;39:1270–3.

    Google Scholar 

  11. Ye C, Ruan Y, Zou L, Li G, Li C, Chen Y, et al. The 2011 survey on hypertensive disorders of pregnancy (HDP) in China: prevalence, risk factors, complications, pregnancy and perinatal outcomes. PLoS One. 2014;9:e100180.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Suhre K, Raffler J, Kastenmüller G. Biochemical insights from population studies with genetics and metabolomics. Arch Biochem Biophys. 2016;589:168–76.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Würtz P, Auro K, Mäkinen VP, Kangas AJ, Soininen P, et al. Metabolic profiling of pregnancy: cross-sectional and longitudinal evidence. BMC Med. 2016;14:205.

    Article  PubMed  PubMed Central  Google Scholar 

  14. White SL, Pasupathy D, Sattar N, Nelson SM, Lawlor DA, Briley AL, et al. Metabolic profiling of gestational diabetes in obese women during pregnancy. Diabetologia. 2017;60:1903–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmidt DR, Patel R, Kirsch DG, Lewis CA, Vander Heiden MG, Locasale JW. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J Clin. 2021;71:333–58.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Agrawal S, Cerdeira AS, Redman C, Vatish M. Meta-analysis and systematic review to assess the role of soluble FMs-like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: the SaPPPhirE study. Hypertension. 2018;71:306–16.

    Article  CAS  PubMed  Google Scholar 

  17. Sovio U, McBride N, Wood AM, Masconi KL, Cook E, Gaccioli F, et al. 4-Hydroxyglutamate is a novel predictor of pre-eclampsia. Int J Epidemiol. 2020;49:301–11.

    Article  PubMed  Google Scholar 

  18. Kuc S, Koster MP, Pennings JL, Hankemeier T, Berger R, Harms AC, et al. Metabolomics profiling for identification of novel potential markers in early prediction of preeclampsia. PLoS One. 2014;9:e98540.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khalil AA, Tsikas D, Akolekar R, Jordan J, Nicolaides KH. Asymmetric dimethylarginine, arginine and homoarginine at 11-13 weeks’ gestation and preeclampsia: a case-control study. J Hum Hypertens. 2013;27:38–43.

    Article  CAS  PubMed  Google Scholar 

  20. Wojcik-Baszko D, Charkiewicz K, Laudanski P. Role of dyslipidemia in preeclampsia—a review of lipidomic analysis of blood, placenta, syncytiotrophoblast microvesicles and umbilical cord artery from women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018;139:19–23.

    Article  CAS  PubMed  Google Scholar 

  21. Dobierzewska A, Soman S, Illanes SE, Morris AJ. Plasma cross-gestational sphingolipidomic analyses reveal potential first-trimester biomarkers of preeclampsia. PLoS One. 2017;12:e0175118.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, et al. First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013;208:58.e1–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bahado-Singh RO, Syngelaki A, Mandal R, Graham SF, Akolekar R, Han B, et al. Metabolomic determination of pathogenesis of late-onset preeclampsia. J Matern Fetal Neonatal Med. 2017;30:658–64.

    Article  CAS  PubMed  Google Scholar 

  24. Do R, Willer CJ, Schmidt EM, Sengupta S, Gao C, Peloso GM, et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat Genet. 2013;45:1345–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  26. Frikke-Schmidt R, Nordestgaard BG, Stene MC, Sethi AA, Remaley AT, Schnohr P, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. Jama. 2008;299:2524–32.

    Article  CAS  PubMed  Google Scholar 

  27. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, et al. Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zuber V, Colijn JM, Klaver C, Burgess S. Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nat Commun. 2020;11:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenomenon. Elife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 2019;4:186.

    Article  PubMed  Google Scholar 

  31. Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35:1880–906.

    Article  PubMed  Google Scholar 

  32. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46:1985–98.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sivanand S, Vander Heiden MG. Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell. 2020;37:147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evans RW, Powers RW, Ness RB, Cropcho LJ, Daftary AR, Harger GF, et al. Maternal and fetal amino acid concentrations and fetal outcomes during pre-eclampsia. Reproduction. 2003;125:785–90.

    Article  CAS  PubMed  Google Scholar 

  38. Lima VJ, Andrade CR, Ruschi GE, Sass N. Serum lipid levels in pregnancies complicated by preeclampsia. Sao Paulo Med J. 2011;129:73–6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care. 2013;40:195–211.

    Article  PubMed  Google Scholar 

  40. Austdal M, Skråstad RB, Gundersen AS, Austgulen R, Iversen AC, Bathen TF. Metabolomic biomarkers in serum and urine in women with preeclampsia. PLoS One. 2014;9:e91923.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yadav K, Aggarwal S, Verma K. Serum βhCG and lipid profile in early second trimester as predictors of pregnancy-induced hypertension. J Obstet Gynaecol India. 2014;64:169–74.

    Article  CAS  PubMed  Google Scholar 

  42. Murmu S, Dwivedi J. Second-trimester maternal serum beta-human chorionic gonadotropin and lipid profile as a predictor of gestational hypertension, preeclampsia, and eclampsia: a prospective observational study. Int J Appl Basic Med Res. 2020;10:49–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Enquobahrie DA, Williams MA, Butler CL, Frederick IO, Miller RS, Luthy DA. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am J Hypertens. 2004;17:574–81.

    Article  CAS  PubMed  Google Scholar 

  44. Kemse NG, Kale AA, Joshi SR. Supplementation of maternal omega-3 fatty acids to pregnancy induced hypertension Wistar rats improves IL10 and VEGF levels. Prostaglandins Leukot Essent Fatty Acids. 2016;104:25–32.

    Article  CAS  PubMed  Google Scholar 

  45. Kemse NG, Kale AA, Joshi SR. A combined supplementation of omega-3 fatty acids and micronutrients (folic acid, vitamin B12) reduces oxidative stress markers in a rat model of pregnancy-induced hypertension. PLoS One. 2014;9:e111902.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wadhwani NS, Narang AS, Mehendale SS, Wagh GN, Gupte SA, Joshi SR. Reduced maternal erythrocyte long-chain polyunsaturated fatty acids exist in early pregnancy in preeclampsia. Lipids. 2016;51:85–94.

    Article  CAS  PubMed  Google Scholar 

  47. Mackay VA, Huda SS, Stewart FM, Tham K, McKenna LA, Martin I, et al. Preeclampsia is associated with compromised maternal synthesis of long-chain polyunsaturated fatty acids, leading to offspring deficiency. Hypertension. 2012;60:1078–85.

    Article  CAS  PubMed  Google Scholar 

  48. Wadhwani N, Patil V, Pisal H, Joshi A, Mehendale S, Gupte S, et al. Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2014;91:21–30.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Walsh SW, Kay HH. Placental tissue levels of nonesterified polyunsaturated fatty acids in normal and preeclamptic pregnancies. Hypertens Preg. 2005;24:235–45.

    Article  CAS  Google Scholar 

  50. Williams MA, Zingheim RW, King IB, Zebelman AM. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995;6:232–7.

    Article  CAS  PubMed  Google Scholar 

  51. Al MD, van Houwelingen AC, Badart-Smook A, Hasaart TH, Roumen FJ, Hornstra G. The essential fatty acid status of mother and child in pregnancy-induced hypertension: a prospective longitudinal study. Am J Obstet Gynecol. 1995;172:1605–14.

    Article  CAS  PubMed  Google Scholar 

  52. Bakouei F, Delavar MA, Mashayekh-Amiri S, Esmailzadeh S, Taheri Z. Efficacy of n-3 fatty acids supplementation on the prevention of pregnancy induced-hypertension or preeclampsia: a systematic review and meta-analysis. Taiwan J Obstet Gynecol. 2020;59:8–15.

    Article  PubMed  Google Scholar 

  53. Chen B, Ji X, Zhang L, Hou Z, Li C, Tong Y. Fish oil supplementation does not reduce risks of gestational diabetes mellitus, pregnancy-induced hypertension, or pre-eclampsia: a meta-analysis of randomized controlled trials. Med Sci Monit. 2015;21:2322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hao Y, Sun X, Wen N, Song D, Li H. Effects of n-3 polyunsaturated fatty acid supplementation on pregnancy outcomes: a systematic review and meta-analysis. Arch Med Sci. 2022;18:890–9.

    CAS  PubMed  Google Scholar 

  55. Zhou SJ, Yelland L, McPhee AJ, Quinlivan J, Gibson RA, Makrides M. Fish-oil supplementation in pregnancy does not reduce the risk of gestational diabetes or preeclampsia. Am J Clin Nutr. 2012;95:1378–84.

    Article  CAS  PubMed  Google Scholar 

  56. Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annu Rev Physiol. 2019;81:139–64.

    Article  CAS  PubMed  Google Scholar 

  57. Tom A, Nair KS. Assessment of branched-chain amino acid status and potential for biomarkers. J Nutr. 2006;136:324s–30s.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2023QH345).

Author information

Authors and Affiliations

Authors

Contributions

JG and XFZ: Study conception, design, Analyses and Draft; XD: Analyses; WSL and LKL: Supervision and validation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Weisheng Li or Likui Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The datasets utilized in this study were obtained from the IEU Open GWAS database (https://gwas.mrcieu.ac.uk/). These public databases permit researchers to access and analyze public datasets for scientific research, rendering ethics approval unnecessary.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zheng, X., Du, X. et al. BMA-based Mendelian randomization identifies blood metabolites as causal candidates in pregnancy-induced hypertension. Hypertens Res 47, 2549–2560 (2024). https://doi.org/10.1038/s41440-024-01787-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01787-4

Keywords

This article is cited by

Search

Quick links