Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypertension and atrial fibrillation: the clinical impact of hypertension on perioperative outcomes of atrial fibrillation ablation and its optimal control for the prevention of recurrence

Abstract

Hypertension (HTN) is one of the major risk factors for developing atrial fibrillation (AF), and it has been estimated that approximately 70% of hypertensive patients are at risk of developing AF. On the other hand, 60-80% of AF patients have HTN. These two diseases share many risk factors such as diabetes mellitus, obesity, alcohol consumption, and sleep apnea syndrome during their onset and disease progression. The mutual presence of these diseases has the potential to create a negative spiral, exacerbating each other’s impact and ultimately leading to cardiovascular events such as heart failure and cerebrovascular disorders, thereby increasing mortality rates. With regard to the treatment of HTN, the variety of antihypertensive drugs and treatment options have significantly increased. Alongside the widespread adoption of antihypertensive therapy, a certain level of efficacy has been recognized in suppressing the incidence of new-onset AF. Catheter ablation is an established and effective treatment for AF. However, a notable recurrence rate persists. In recent years, management of these multiple risk factors has been recognized to be essential for suppressing AF recurrence, and recent guidelines for AF underscore the significance of proactively managing these risks before treatment. Notably, effective HTN management assumes paramount importance given its impact on the morbidity of AF patients. This review summarizes the correlation between HTN control before and after ablation and the risk of AF recurrence. The focus is on elucidating the pathophysiological background and its impact on clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021; 398: 957-80.

  2. Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet. 2008;371:1513–8.

    Article  PubMed  Google Scholar 

  3. Imano H, Kitamura A, Sato S, Kiyama M, Ohira T, Yamagishi K, et al. Trends for blood pressure and its contribution to stroke incidence in the middle-aged Japanese population: the Circulatory Risk in Communities Study (CIRCS). Stroke. 2009;40:1571–7.

    Article  PubMed  Google Scholar 

  4. Fujiyoshi A, Ohkubo T, Miura K, Murakami Y, Nagasawa SY, Okamura T, et al. Blood pressure categories and long-term risk of cardiovascular disease according to age group in Japanese men and women. Hypertens Res. 2012;35:947–53.

    Article  PubMed  Google Scholar 

  5. Takashima N, Ohkubo T, Miura K, Okamura T, Murakami Y, Fujiyoshi A, et al. Long-term risk of BP values above normal for cardiovascular mortality: a 24-year observation of Japanese aged 30 to 92 years. J Hypertens. 2012;30:2299–306.

    Article  CAS  PubMed  Google Scholar 

  6. Yusuf S, Thom T, Abbott RD. Changes in hypertension treatment and in congestive heart failure mortality in the United States. Hypertension. 1989;13:I74–9.

    Article  CAS  PubMed  Google Scholar 

  7. Narita K, Hoshide S, Kario K. Short- to long-term blood pressure variability: current evidence and new evaluations. Hypertens Res. 2023;46:950–8.

    Article  PubMed  Google Scholar 

  8. Kario K, Okawara Y, Kanegae H, Hoshide S. Potential long-term benefit of home systolic blood pressure below 125 mm Hg for cardiovascular risk reduction: the J-HOP Study Extended. Hypertension. 2024;81:282–90.

    CAS  PubMed  Google Scholar 

  9. Ball J, Carrington MJ, McMurray JJ, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol. 2013;167:1807–24.

    Article  PubMed  Google Scholar 

  10. Allan V, Honarbakhsh S, Casas JP, Wallace J, Hunter R, Schilling R, et al. Are cardiovascular risk factors also associated with the incidence of atrial fibrillation? A systematic review and field synopsis of 23 factors in 32 population-based cohorts of 20 million participants. Thromb Haemost. 2017;117:837–50.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kokubo Y, Watanabe M, Higashiyama A, Nakao YM, Kusano K, Miyamoto Y. Development of a basic risk score for incident atrial fibrillation in a Japanese general population- the Suita study. Circ J. 2017;81:1580–8.

    Article  PubMed  Google Scholar 

  12. Nieuwlaat R, Capucci A, Camm AJ, Olsson SB, Andresen D, Davies DW, et al. Atrial fibrillation management: a prospective survey in ESC member countries: the Euro Heart Survey on Atrial Fibrillation. Eur Heart J. 2005;26:2422–34.

    Article  PubMed  Google Scholar 

  13. Ogawa S, Yamashita T, Yamazaki T, Aizawa Y, Atarashi H, Inoue H, et al. Optimal treatment strategy for patients with paroxysmal atrial fibrillation: J-RHYTHM Study. Circ J. 2009;73:242–8.

    Article  PubMed  Google Scholar 

  14. Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet. 2015;386:154–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks of cardiovascular disease, renal disease, and death: systematic review and meta-analysis. BMJ. 2016;354:i4482.

    Article  PubMed  Google Scholar 

  16. Joglar JA, Chung MK, Armbruster AL, Benjamin EJ, Chyou JY, Cronin EM, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2024;149:e1–e156.

    Article  PubMed  Google Scholar 

  17. Ouyang F, Tilz R, Chun J, Schmidt B, Wissner E, Zerm T, et al. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation. 2010;122:2368–77.

    Article  PubMed  Google Scholar 

  18. Jaïs P, Cauchemez B, Macle L, Daoud E, Khairy P, Subbiah R, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 2008;118:2498–505.

    Article  PubMed  Google Scholar 

  19. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm. 2017;14:e275–e444.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tilz RR, Rillig A, Thum AM, Arya A, Wohlmuth P, Metzner A, et al. Catheter ablation of long-standing persistent atrial fibrillation: 5-year outcomes of the Hamburg Sequential Ablation Strategy. J Am Coll Cardiol. 2012;60:1921–9.

    Article  PubMed  Google Scholar 

  21. Verma A, Jiang CY, Betts TR, Chen J, Deisenhofer I, Mantovan R, et al. Approaches to catheter ablation for persistent atrial fibrillation. N. Engl J Med. 2015;372:1812–22.

    Article  PubMed  Google Scholar 

  22. Wong KC, Paisey JR, Sopher M, Balasubramaniam R, Jones M, Qureshi N, et al. No benefit of complex fractionated atrial electrogram ablation in addition to circumferential pulmonary vein ablation and linear ablation: benefit of complex ablation study. Circ Arrhythm Electrophysiol. 2015;8:1316–24.

    Article  PubMed  Google Scholar 

  23. Scott PA, Silberbauer J, Murgatroyd FD. The impact of adjunctive complex fractionated atrial electrogram ablation and linear lesions on outcomes in persistent atrial fibrillation: a meta-analysis. Europace. 2016;18:359–67.

    Article  PubMed  Google Scholar 

  24. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Europace. 2016;18:1455–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choisy SC, Arberry LA, Hancox JC, James AF. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension. 2007;49:498–505.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Choisy SC, Barman P, Zhang H, Hancox JC, Jones SA, et al. Atrial remodeling and the substrate for atrial fibrillation in rat hearts with elevated afterload. Circ Arrhythm Electrophysiol. 2011;4:761–9.

    Article  PubMed  Google Scholar 

  27. Noresson E, Ricksten SE, Thorén P. Left atrial pressure in normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1979;107:9–12.

    Article  CAS  PubMed  Google Scholar 

  28. Lau DH, Shipp NJ, Kelly DJ, Thanigaimani S, Neo M, Kuklik P, et al. Atrial arrhythmia in ageing spontaneously hypertensive rats: unraveling the substrate in hypertension and ageing. PLoS One. 2013;8:e72416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kistler PM, Sanders P, Dodic M, Spence SJ, Samuel CS, Zhao C, et al. Atrial electrical and structural abnormalities in an ovine model of chronic blood pressure elevation after prenatal corticosteroid exposure: implications for development of atrial fibrillation. Eur Heart J. 2006;27:3045–56.

    Article  PubMed  Google Scholar 

  30. Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20:397–413.

    Article  CAS  PubMed  Google Scholar 

  31. Pluteanu F, Heß J, Plackic J, Nikonova Y, Preisenberger J, Bukowska A, et al. Early subcellular Ca2+ remodelling and increased propensity for Ca2+ alternans in left atrial myocytes from hypertensive rats. Cardiovasc Res. 2015;106:87–97.

    Article  CAS  PubMed  Google Scholar 

  32. Vaziri SM, Larson MG, Lauer MS, Benjamin EJ, Levy D. Influence of blood pressure on left atrial size. The Framingham Heart Study. Hypertension. 1995;25:1155–60.

    Article  CAS  PubMed  Google Scholar 

  33. Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation. 1994;89:724–30.

    Article  CAS  PubMed  Google Scholar 

  34. Verdecchia P, Reboldi G, Gattobigio R, Bentivoglio M, Borgioni C, Angeli F, et al. Atrial fibrillation in hypertension: predictors and outcome. Hypertension. 2003;41:218–23.

    Article  CAS  PubMed  Google Scholar 

  35. Okin PM, Gerdts E, Wachtell K, Oikarinen L, Nieminen MS, Dahlöf B, et al. Relationship of left atrial enlargement to persistence or development of ECG left ventricular hypertrophy in hypertensive patients: implications for the development of new atrial fibrillation. J Hypertens. 2010;28:1534–40.

    Article  CAS  PubMed  Google Scholar 

  36. Medi C, Kalman JM, Spence SJ, Teh AW, Lee G, Bader I, et al. Atrial electrical and structural changes associated with longstanding hypertension in humans: implications for the substrate for atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:1317–24.

    Article  PubMed  Google Scholar 

  37. Kamioka M, Hijioka N, Matsumoto Y, Nodera M, Kaneshiro T, Suzuki H, et al. Uncontrolled blood pressure affects atrial remodeling and adverse clinical outcome in paroxysmal atrial fibrillation. Pacing Clin Electrophysiol. 2018;41:402–10.

    Article  PubMed  Google Scholar 

  38. Pan NH, Tsao HM, Chang NC, Chen YJ, Chen SA. Aging dilates atrium and pulmonary veins: implications for the genesis of atrial fibrillation. Chest. 2008;133:190–6.

    Article  PubMed  Google Scholar 

  39. Imada M, Funabashi N, Asano M, Uehara M, Ueda M, Komuro I. Anatomical remodeling of left atria in subjects with chronic and paroxysmal atrial fibrillation evaluated by multislice computed tomography. Int J Cardiol. 2007;119:384–8.

    Article  PubMed  Google Scholar 

  40. Klos M, Calvo D, Yamazaki M, Zlochiver S, Mironov S, Cabrera JA, et al. Atrial septopulmonary bundle of the posterior left atrium provides a substrate for atrial fibrillation initiation in a model of vagally mediated pulmonary vein tachycardia of the structurally normal heart. Circ Arrhythm Electrophysiol. 2008;1:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954–68.

    Article  CAS  PubMed  Google Scholar 

  42. Bosch RF, Nattel S. Cellular electrophysiology of atrial fibrillation. Cardiovasc Res. 2002;54:259–69.

    Article  CAS  PubMed  Google Scholar 

  43. Schotten U, Ausma J, Stellbrink C, Sabatschus I, Vogel M, Frechen D, et al. Cellular mechanisms of depressed atrial contractility in patients with chronic atrial fibrillation. Circulation. 2001;103:691–8.

    Article  CAS  PubMed  Google Scholar 

  44. Allessie M, Ausma J, Schotten U. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–46.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SR, Choi YJ, Choi EK, Han KD, Lee E, Cha MJ, et al. Blood pressure variability and incidence of new-onset atrial fibrillation: a nationwide population-based study. Hypertension. 2020;75:309–15.

    Article  CAS  PubMed  Google Scholar 

  46. Webb AJ, Rothwell PM. Blood pressure variability and risk of new-onset atrial fibrillation: a systematic review of randomized trials of antihypertensive drugs. Stroke. 2010;41:2091–3.

    Article  CAS  PubMed  Google Scholar 

  47. Conen D, Tedrow UB, Koplan BA, Glynn RJ, Buring JE, Albert CM. Influence of systolic and diastolic blood pressure on the risk of incident atrial fibrillation in women. Circulation. 2009;119:2146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Perkiömäki JS, Nortamo S, Ylitalo A, Kesäniemi A, Ukkola O, Huikuri HV. Ambulatory blood pressure characteristics and long-term risk for atrial fibrillation. Am J Hypertens. 2017;30:264–70.

    Article  PubMed  Google Scholar 

  49. Ciaroni S, Cuenoud L, Bloch A. Clinical study to investigate the predictive parameters for the onset of atrial fibrillation in patients with essential hypertension. Am Heart J. 2000;139:814–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lip GY, Frison L, Grind M. Effect of hypertension on anticoagulated patients with atrial fibrillation. Eur Heart J. 2007;28:752–9.

    Article  CAS  PubMed  Google Scholar 

  51. Verdecchia P, Staessen JA, Angeli F, de Simone G, Achilli A, Ganau A, et al. Usual versus tight control of systolic blood pressure in non-diabetic patients with hypertension (Cardio-Sis): an open-label randomised trial. Lancet. 2009;374:525–33.

    Article  PubMed  Google Scholar 

  52. Okin PM, Hille DA, Larstorp AC, Wachtell K, Kjeldsen SE, Dahlöf B, et al. Effect of lower on-treatment systolic blood pressure on the risk of atrial fibrillation in hypertensive patients. Hypertension. 2015;66:368–73.

    Article  CAS  PubMed  Google Scholar 

  53. Kamioka M, Kaneshiro T, Hijioka N, Amami K, Nodera M, Yamada S, et al. Visit-to-visit blood pressure variability predicts atrial fibrillation recurrence after pulmonary vein isolation in patients with hypertension and atrial fibrillation. Circ Rep. 2021;3:187–93.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wada T, Sakuragi S, Saito T, Kawaguchi T, Kodera N, Iida T, et al. Favorable effect of catheter ablation on nocturnal hypertension in patients with paroxysmal atrial fibrillation. J Hypertens. 2020;38:1174–82.

    Article  CAS  PubMed  Google Scholar 

  55. Healey JS, Baranchuk A, Crystal E, Morillo CA, Garfinkle M, Yusuf S, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol. 2005;45:1832–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kalus JS, Coleman CI, White CM. The impact of suppressing the renin-angiotensin system on atrial fibrillation. J Clin Pharm. 2006;46:21–8.

    Article  CAS  Google Scholar 

  57. Schneider MP, Hua TA, Böhm M, Wachtell K, Kjeldsen SE, Schmieder RE. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 2010;55:2299–307.

    Article  PubMed  Google Scholar 

  58. Schmieder RE, Kjeldsen SE, Julius S, McInnes GT, Zanchetti A, Hua TA. Reduced incidence of new-onset atrial fibrillation with angiotensin II receptor blockade: the VALUE trial. J Hypertens. 2008;26:403–11.

    Article  CAS  PubMed  Google Scholar 

  59. Tveit A, Seljeflot I, Grundvold I, Abdelnoor M, Smith P, Arnesen H. Effect of candesartan and various inflammatory markers on maintenance of sinus rhythm after electrical cardioversion for atrial fibrillation. Am J Cardiol. 2007;99:1544–8.

    Article  CAS  PubMed  Google Scholar 

  60. Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, Maggioni AP, et al. Valsartan for prevention of recurrent atrial fibrillation. N. Engl J Med. 2009;360:1606–17.

    Article  PubMed  Google Scholar 

  61. Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlöf B, et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention For End Point Reduction in Hypertension (LIFE) study. J Am Coll Cardiol. 2005;45:712–9.

    Article  CAS  PubMed  Google Scholar 

  62. Schaer BA, Schneider C, Jick SS, Conen D, Osswald S, Meier CR. Risk for incident atrial fibrillation in patients who receive antihypertensive drugs: a nested case-control study. Ann Intern Med. 2010;152:78–84.

    Article  PubMed  Google Scholar 

  63. Neefs J, van den Berg NW, Limpens J, Berger WR, Boekholdt SM, Sanders P, et al. Aldosterone pathway blockade to prevent atrial fibrillation: a systematic review and meta-analysis. Int J Cardiol. 2017;231:155–61.

    Article  CAS  PubMed  Google Scholar 

  64. Parkash R, Wells GA, Sapp JL, Healey JS, Tardif JC, Greiss I, et al. Effect of aggressive blood pressure control on the recurrence of atrial fibrillation after catheter ablation: a randomized, open-label clinical trial (SMAC-AF [substrate modification with aggressive blood pressure control]). Circulation. 2017;135:1788–98.

    Article  CAS  PubMed  Google Scholar 

  65. Yamabe H, Kaikita K, Matsumura T, Iwasa A, Koyama J, Uemura T, et al. Study on the effect of irbesartan on atrial fibrillation recurrence in Kumamoto: Atrial fibrillation suppression trial (SILK study). J Cardiol. 2018;71:129–34.

    Article  PubMed  Google Scholar 

  66. Pokushalov E, Romanov A, Corbucci G, Artyomenko S, Baranova V, Turov A, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70.

    Article  PubMed  Google Scholar 

  67. Kiuchi MG, Chen S, Hoye NA, Pürerfellner H. Pulmonary vein isolation combined with spironolactone or renal sympathetic denervation in patients with chronic kidney disease, uncontrolled hypertension, paroxysmal atrial fibrillation, and a pacemaker. J Inter Card Electrophysiol. 2018;51:51–9.

    Article  Google Scholar 

  68. Steinberg JS, Shabanov V, Ponomarev D, Losik D, Ivanickiy E, Kropotkin E, et al. Effect of renal denervation and catheter ablation vs catheter ablation alone on atrial fibrillation recurrence among patients with paroxysmal atrial fibrillation and hypertension: the ERADICATE-AF randomized clinical trial. JAMA. 2020;323:248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang X, Zhao Q, Deng H, Wang X, Guo Z, Dai Z, et al. Effects of renal sympathetic denervation on the atrial electrophysiology in dogs with pacing-induced heart failure. Pacing Clin Electrophysiol. 2014;37:1357–66.

    Article  PubMed  Google Scholar 

  70. Wang X, Huang C, Zhao Q, Huang H, Tang Y, Dai Z, et al. Effect of renal sympathetic denervation on the progression of paroxysmal atrial fibrillation in canines with long-term intermittent atrial pacing. Europace. 2015;17:647–54.

    Article  PubMed  Google Scholar 

  71. Pathak RK, Middeldorp ME, Lau DH, Mehta AB, Mahajan R, Twomey D, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol. 2014;64:2222–31.

    Article  PubMed  Google Scholar 

  72. Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term effect of goal-directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol. 2015;65:2159–69.

    Article  PubMed  Google Scholar 

  73. Vemulapalli S, Hellkamp AS, Jones WS, Piccini JP, Mahaffey KW, Becker RC, et al. Blood pressure control and stroke or bleeding risk in anticoagulated patients with atrial fibrillation: results from the ROCKET AF Trial. Am Heart J. 2016;178:74–84.

    Article  PubMed  Google Scholar 

  74. Park S, Bergmark BA, Shi M, Lanz HJ, Chung N, Ruff CT, et al. Edoxaban versus warfarin stratified by average blood pressure in 19 679 patients with atrial fibrillation and a history of hypertension in the ENGAGE AF-TIMI 48 trial. Hypertension. 2019;74:597–605.

    Article  CAS  PubMed  Google Scholar 

  75. Rao MP, Halvorsen S, Wojdyla D, Thomas L, Alexander JH, Hylek EM, et al. Blood pressure control and risk of stroke or systemic embolism in patients with atrial fibrillation: results from the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation (ARISTOTLE) trial. J Am Heart Assoc. 2015;4:e002015.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kario K, Hasebe N, Okumura K, Yamashita T, Akao M, Atarashi H, et al. Anticoagulant therapy and home blood pressure-associated risk for stroke/bleeding events in elderly patients with non-valvular atrial fibrillation: the sub-cohort study of ANAFIE registry. Hypertens Res. 2023;46:2575–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kamioka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamioka, M., Narita, K., Watanabe, T. et al. Hypertension and atrial fibrillation: the clinical impact of hypertension on perioperative outcomes of atrial fibrillation ablation and its optimal control for the prevention of recurrence. Hypertens Res 47, 2800–2810 (2024). https://doi.org/10.1038/s41440-024-01796-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01796-3

Keywords

This article is cited by

Search

Quick links