Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Fast track – JSH2024 FUKUOKA
  • Published:

Smartphone application-based intervention to lower blood pressure: a systematic review and meta-analysis

A Comment to this article was published on 14 November 2024

Abstract

Nowadays, the mHealth market is flooded with smartphone applications (apps) lacking validation for blood pressure (BP)-lowering effects and BP measurement accuracy. This systematic review for Guidelines for BP control using digital technologies of the Japanese Society of Hypertension aimed to assess the validation studies of apps. We searched eligible studies in Ovid MEDLINE, Cochrane Library, and Ichushi, focusing on randomized controlled trials and observational studies comparing the effects of smartphone app-based interventions with non-digital healthcare. Random effects models of meta-analysis were employed to estimate the pooled effects of mean BP change and 95% confidence intervals (CIs). Out of 7385 studies screened, 76 studies with 46,459 participants were included. The interventions were significantly associated with a reduction in office systolic and diastolic BP at six months (systolic BP, −2.76 mmHg, 95% CI: −3.94 to −1.58; diastolic BP, −1.23 mmHg, −1.80 to −0.67). Normotensives saw a significant reduction in office systolic BP at three-month (−4.44 mmHg, -6.96 to −1.92), diminishing afterward (six-month, 0.86 mmHg, −2.81 to 4.52; twelve-month, 0.86 mmHg, −2.81 to 4.52). Conversely, hypertensive participants experienced a significant reduction in office systolic BP at both three- and six-month (three-month, −7.71 mmHg, −10.63 to −4.79; six-month, −1.88 mmHg, −3.41 to −0.35), albeit with limited evidence thereafter. A larger BP reduction was observed among participants using apps with wireless transmission of BP measurements (P = 0.047 for interaction), while there was no clear difference in BP reduction according to the presence of other functions. Smartphone app-based interventions may hold the potential to improve BP levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhou B, Perel P, Mensah GA, Ezzati M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat Rev Cardiol. 2021;18:785–802.

    PubMed  PubMed Central  Google Scholar 

  2. Xu X, Shi Z, Zhou L, Lin J, Atlantis E, Chen X, et al. Impact of COVID−19 on risks and deaths of non-communicable diseases in the Western Pacific region. Lancet Reg Health West Pac. 2024;43:100795.

    PubMed  Google Scholar 

  3. Alessa T, Hawley MS, Hock ES, de Witte L. Smartphone apps to support self-management of hypertension: review and content analysis. JMIR Mhealth Uhealth. 2019;7:e13645.

    PubMed  PubMed Central  Google Scholar 

  4. Kitt J, Fox R, Tucker KL, McManus RJ. New approaches in hypertension management: a review of current and developing technologies and their potential impact on hypertension care. Curr Hypertens Rep. 2019;21:44.

    PubMed  PubMed Central  Google Scholar 

  5. Statista. Smartphone penetration rate in Japan from 2018 to 2022 with a forecast until 2027. https://www.statista.com/statistics/275102/share-of-the-population-to-own-a-smartphone-japan/. Accessed Sep 29th, 2023.

  6. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the american heart association. Circulation. 2015;132:1157–213.

    PubMed  PubMed Central  Google Scholar 

  7. Jamaladin H, van de Belt TH, Luijpers LC, de Graaff FR, Bredie SJ, Roeleveld N, et al. Mobile apps for blood pressure monitoring: systematic search in app stores and content analysis. JMIR Mhealth Uhealth. 2018;6:e187.

    PubMed  PubMed Central  Google Scholar 

  8. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Bmj. 2021;372:n71.

    PubMed  PubMed Central  Google Scholar 

  9. Grønli TM, Hansen J, Ghinea G, Younas M. Mobile Application Platform Heterogeneity: Android vs Windows Phone vs iOS vs. Firefox OS. 2014 IEEE 28th International Conference on Advanced Information Networking and Applications (AINA); 2014.

  10. Japan Council for Quality Health Care. Minds Manual Developing Committee ed. Minds Manual for Guideline Development 2020 ver. 3.0. https://minds.jcqhc.or.jp/methods/cpg-development/minds-manual/. Accessed Dec 3, 2023.

  11. National Institute for Health and Care Excellence (NICE). Developing NICE guidelines: the manual. 2014. https://www.nice.org.uk/media/default/about/what-we-do/our-programmes/developing-nice-guidelines-the-manual.pdf. Accessed Mar 28th, 2024.

  12. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    PubMed  PubMed Central  Google Scholar 

  13. Egger M, Smith Davey, Schneider G, Minder M. C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    CAS  PubMed  Google Scholar 

  15. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook.

  16. Auton A, Zaman S, Padayachee Y, Samways JW, Quaife NM, Sweeney M, et al. Smartphone-based remote monitoring for chronic heart failure: mixed methods analysis of user experience from patient and nurse perspectives. JMIR Nurs. 2023;6:e44630.

    PubMed  PubMed Central  Google Scholar 

  17. Beger C, Rüegger D, Lenz A, Wagner S, Haller H, Schmidt-Ott KM, et al. Blood pressure dynamics during home blood pressure monitoring with a digital blood pressure coach-a prospective analysis of individual user data. Front Cardiovasc Med. 2023;10:1115987.

    PubMed  PubMed Central  Google Scholar 

  18. Brewer LC, Jones C, Slusser JP, Pasha M, Lalika M, Chacon M, et al. mHealth intervention for promoting hypertension self-management among African American patients receiving care at a community health center: formative evaluation of the Faith! hypertension app. JMIR Form Res. 2023;7:e45061.

    PubMed  PubMed Central  Google Scholar 

  19. Falah F, Sajadi SA, Pishgooie AH. Effect of a mobile-based educational app on blood pressure of patients with hypertension. BMJ Mil Health. 2023;169:e001577.

  20. Leupold F, Karimzadeh A, Breitkreuz T, Draht F, Klidis K, Grobe T, et al. Digital redesign of hypertension management with practice and patient apps for blood pressure control (PIA study): A cluster-randomised controlled trial in general practices. EClinicalMedicine. 2023;55:101712.

    PubMed  Google Scholar 

  21. Oclaman JM, Murray ML, Grandis DJ, Beatty AL. The association between mobile app use and change in functional capacity among cardiac rehabilitation participants: cohort study. JMIR Cardio. 2023;7:e44433.

    PubMed  PubMed Central  Google Scholar 

  22. Wang S, Leung M, Leung SY, Han J, Leung W, Hui E, et al. Safety, feasibility, and acceptability of telemedicine for hypertension in primary care: a proof-of-concept and pilot randomized controlled trial (SATE-HT). J Med Syst. 2023;47:34.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong EML, Leung DYP, Wang Q, Leung AYM, Cheung ASP. The effect of a lifestyle intervention program using a mobile application versus the effect of a program using a booklet for adults with metabolic syndrome: a three-arm randomized controlled trial. J Nurs Scholarsh. 2023;55:936–48.

    PubMed  Google Scholar 

  24. Zhang N, Zhou M, Li M, Ma G. Effects of smartphone-based remote interventions on dietary intake, physical activity, weight control, and related health benefits among the older population with overweight and obesity in China: randomized controlled trial. J Med Internet Res. 2023;25:e41926.

    PubMed  PubMed Central  Google Scholar 

  25. Alsaqer K, Bebis H. Self-care of hypertension of older adults during COVID−19 lockdown period: a randomized controlled trial. Clin Hypertens. 2022;28:21.

    PubMed  PubMed Central  Google Scholar 

  26. Branch OH, Rikhy M, Auster-Gussman LA, Lockwood KG, Graham SA. Relationships between blood pressure reduction, weight loss, and engagement in a digital app-based hypertension care program: observational study. JMIR Form Res. 2022;6:e38215.

    PubMed  PubMed Central  Google Scholar 

  27. Indraratna P, Biswas U, McVeigh J, Mamo A, Magdy J, Vickers D, et al. A smartphone-based model of care to support patients with cardiac disease transitioning from hospital to the community (TeleClinical Care): pilot randomized controlled trial. JMIR Mhealth Uhealth. 2022;10:e32554.

    PubMed  PubMed Central  Google Scholar 

  28. Kanai M, Toda T, Yamamoto K, Akimoto M, Hagiwara Y. A mobile health-based disease management program improves blood pressure in people with multiple lifestyle-related diseases at risk of developing vascular disease - a retrospective observational study. Circ Rep. 2022;4:322–9.

    PubMed  PubMed Central  Google Scholar 

  29. Kawai Y, Waki K, Yamaguchi S, Shibuta T, Miyake K, Kimura S, et al. The use of information and communication technology-based self-management system dialbeticslite in treating abdominal obesity in Japanese office workers: prospective single-arm pilot intervention study. JMIR Diabetes. 2022;7:e40366.

    PubMed  PubMed Central  Google Scholar 

  30. Li Y, Gong Y, Zheng B, Fan F, Yi T, Zheng Y, et al. Effects on adherence to a mobile app-based self-management digital therapeutics among patients with coronary heart disease: pilot randomized controlled trial. JMIR Mhealth Uhealth. 2022;10:e32251.

    PubMed  PubMed Central  Google Scholar 

  31. Ma Y, Cheng HY, Sit JWH, Chien WT. The effects of a smartphone-enhanced nurse-facilitated self-care intervention for Chinese hypertensive patients: a randomised controlled trial. Int J Nurs Stud. 2022;134:104313.

    PubMed  Google Scholar 

  32. Ögmundsdóttir Michelsen H, Sjölin I, Bäck M, Gonzalez Garcia M, Olsson A, Sandberg C, et al. Effect of a lifestyle-focused web-based application on risk factor management in patients who have had a myocardial infarction: randomized controlled trial. J Med Internet Res. 2022;24:e25224.

    PubMed  PubMed Central  Google Scholar 

  33. Mitrani LR, Goldenthal I, Leskowitz J, Wan EY, Dizon J, Saluja D, et al. Risk factor management of atrial fibrillation using mHealth: the atrial fibrillation - helping address care with remote technology (AF-HEART) pilot study. Cardiovasc Digit Health J. 2022;3:14–20.

    PubMed  Google Scholar 

  34. Parker SM, Barr M, Stocks N, Denney-Wilson E, Zwar N, Karnon J, et al. Preventing chronic disease in overweight and obese patients with low health literacy using eHealth and teamwork in primary healthcare (HeLP-GP): a cluster randomised controlled trial. BMJ Open. 2022;12:e060393.

    PubMed  PubMed Central  Google Scholar 

  35. Pletcher MJ, Fontil V, Modrow MF, Carton T, Chamberlain AM, Todd J, et al. Effectiveness of standard vs enhanced self-measurement of blood pressure paired with a connected smartphone application: a randomized clinical trial. JAMA Intern Med. 2022;182:1025–34.

    PubMed  PubMed Central  Google Scholar 

  36. Sakboonyarat B, Mungthin M, Hatthachote P, Srichan Y, Rangsin R. Model development to improve primary care services using an innovative network of homecare providers (WinCare) to promote blood pressure control among elderly patients with noncommunicable diseases in Thailand: a prospective cohort study. BMC Prim Care. 2022;23:40.

    PubMed  PubMed Central  Google Scholar 

  37. Wong AKC, Wong FKY, Chow KKS, Wong SM, Bayuo J, Ho AKY. Effect of a mobile health application with nurse support on quality of life among community-dwelling older adults in Hong Kong: a randomized clinical trial. JAMA Netw Open. 2022;5:e2241137.

    PubMed  PubMed Central  Google Scholar 

  38. Wong EML, Leung DYP, Tam HL, Ko SY, Leung AYM, Lam SC, et al. Effectiveness of a nurse-led support programme using a mobile application versus phone advice on patients at risk of coronary heart disease - a pilot randomized controlled trial. Risk Manag Health Policy. 2022;15:597–610.

    Google Scholar 

  39. Xia SF, Maitiniyazi G, Chen Y, Wu XY, Zhang Y, Zhang XY, et al. Web-based tangplan and wechat combination to support self-management for patients with type 2 diabetes: randomized controlled trial. JMIR Mhealth Uhealth. 2022;10:e30571.

    PubMed  PubMed Central  Google Scholar 

  40. Yang L, Xu J, Kang C, Bai Q, Wang X, Du S, et al. Effects of mobile phone-based telemedicine management in patients with type 2 diabetes mellitus: a randomized clinical trial. Am J Med Sci. 2022;363:224–31.

    PubMed  Google Scholar 

  41. Yilmaz E, Uzuner A, Bajgora M, Dogan B, Altikardes ZA, Kavakli Geris B, et al. Effect of eTansiyon smartphone application on hypertension control. Prim Health Care Res Dev. 2022;23:e64.

    PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Tao Y, Zhong Y, Thompson J, Rahmani J, Bhagavathula AS, et al. Feedback based on health advice via tracing bracelet and smartphone in the management of blood pressure among hypertensive patients: a community-based RCT trial in Chongqing, China. Medicine. 2022;101:e29346.

    PubMed  PubMed Central  Google Scholar 

  43. Zhong J, Zhang H, Li Z, Qian D, Zhang Y, Li C, et al. Effect of social app-assisted education and support on glucose control in patients with coronary heart disease and diabetes mellitus. Front Cardiovasc Med. 2022;9:947130.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kario K, Nomura A, Harada N, Okura A, Nakagawa K, Tanigawa T, et al. Efficacy of a digital therapeutics system in the management of essential hypertension: the HERB-DH1 pivotal trial. Eur Heart J. 2021;42:4111–22.

    PubMed  PubMed Central  Google Scholar 

  45. Kario K, Nomura A, Kato A, Harada N, Tanigawa T, So R, et al. Digital therapeutics for essential hypertension using a smartphone application: a randomized, open-label, multicenter pilot study. J Clin Hypertens. 2021;23:923–34.

    Google Scholar 

  46. Lim SL, Ong KW, Johal J, Han CY, Yap QV, Chan YH, et al. Effect of a smartphone app on weight change and metabolic outcomes in Asian adults with type 2 diabetes: a randomized clinical trial. JAMA Netw Open. 2021;4:e2112417.

    PubMed  PubMed Central  Google Scholar 

  47. Lim SL, Ong KW, Johal J, Han CY, Yap QV, Chan YH, et al. A smartphone app-based lifestyle change program for prediabetes (D’LITE Study) in a multiethnic Asian population: a randomized controlled trial. Front Nutr. 2021;8:780567.

    PubMed  Google Scholar 

  48. Frith G, Carver K, Curry S, Darby A, Sydes A, Symonds S, et al. Changes in patient activation following cardiac rehabilitation using the Active(+)me digital healthcare platform during the COVID−19 pandemic: a cohort evaluation. BMC Health Serv Res. 2021;21:1363.

    PubMed  PubMed Central  Google Scholar 

  49. Fruhwirth V, Berger L, Gattringer T, Fandler-Höfler S, Kneihsl M, Schwerdtfeger A, et al. Evaluation of a newly developed smartphone app for risk factor management in young patients with ischemic stroke: a pilot study. Front Neurol. 2021;12:791545.

    PubMed  Google Scholar 

  50. Gazit T, Gutman M, Beatty AL. Assessment of hypertension control among adults participating in a mobile technology blood pressure self-management program. JAMA Netw Open. 2021;4:e2127008.

    PubMed  PubMed Central  Google Scholar 

  51. Jia W, Zhang P, Zhu D, Duolikun N, Li H, Bao Y, et al. Evaluation of an mHealth-enabled hierarchical diabetes management intervention in primary care in China (ROADMAP): a cluster randomized trial. PLoS Med. 2021;18:e1003754.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li A, Del Olmo MG, Fong M, Sim K, Lymer SJ, Cunich M, et al. Effect of a smartphone application (Perx) on medication adherence and clinical outcomes: a 12-month randomised controlled trial. BMJ Open. 2021;11:e047041.

    PubMed  PubMed Central  Google Scholar 

  53. Payne Riches S, Piernas C, Aveyard P, Sheppard JP, Rayner M, Albury C, et al. A mobile health salt reduction intervention for people with hypertension: results of a feasibility randomized controlled trial. JMIR Mhealth Uhealth. 2021;9:e26233.

    PubMed  PubMed Central  Google Scholar 

  54. Tekkeşin A, Hayıroğlu M, Çinier G, Özdemir YS, İnan D, Yüksel G, et al. Lifestyle intervention using mobile technology and smart devices in patients with high cardiovascular risk: a pragmatic randomised clinical trial. Atherosclerosis. 2021;319:21–7.

    PubMed  Google Scholar 

  55. Wang CH, Yang HW, Huang HL, Hsiao CY, Jiu BK, Lin C, et al. Long-term effect of device-guided slow breathing on blood pressure regulation and chronic inflammation in patients with essential hypertension using a wearable ECG device. Acta Cardiol Sin. 2021;37:195–203.

    PubMed  PubMed Central  Google Scholar 

  56. Yan LL, Gong E, Gu W, Turner EL, Gallis JA, Zhou Y, et al. Effectiveness of a primary care-based integrated mobile health intervention for stroke management in rural China (SINEMA): a cluster-randomized controlled trial. PLoS Med. 2021;18:e1003582.

    PubMed  PubMed Central  Google Scholar 

  57. Yin BD, Tu DH, Yang N, Wang J. The application effect of internet technology on managing patients with hypertension in a medical center: A prospective case-control study. Medicine. 2021;100:e28027.

    PubMed  PubMed Central  Google Scholar 

  58. Cho SMJ, Lee JH, Shim JS, Yeom H, Lee SJ, Jeon YW, et al. Effect of smartphone-based lifestyle coaching app on community-dwelling population with moderate metabolic abnormalities: randomized controlled trial. J Med Internet Res. 2020;22:e17435.

    PubMed  PubMed Central  Google Scholar 

  59. Dorsch MP, Cornellier ML, Poggi AD, Bilgen F, Chen P, Wu C, et al. Effects of a Novel Contextual Just-In-Time Mobile App Intervention (LowSalt4Life) on Sodium intake in Adults with hypertension: pilot randomized controlled trial. JMIR Mhealth Uhealth. 2020;8:e16696.

    PubMed  PubMed Central  Google Scholar 

  60. Freene N, van Berlo S, McManus M, Mair T, Davey R. A Behavioral Change Smartphone App and Program (ToDo-CR) to decrease sedentary behavior in cardiac rehabilitation participants: prospective feasibility cohort study. JMIR Form Res. 2020;4:e17359.

    PubMed  PubMed Central  Google Scholar 

  61. Gong K, Yan YL, Li Y, Du J, Wang J, Han Y, et al. Mobile health applications for the management of primary hypertension: A multicenter, randomized, controlled trial. Medicine. 2020;99:e19715.

    PubMed  PubMed Central  Google Scholar 

  62. Kim DY, Kwon H, Nam KW, Lee Y, Kwon HM, Chung YS. Remote management of poststroke patients with a smartphone-based management system integrated in clinical care: prospective, nonrandomized, interventional study. J Med Internet Res. 2020;22:e15377.

    PubMed  PubMed Central  Google Scholar 

  63. Lee DY, Yoo SH, Min KP, Park CY. Effect of voluntary participation on mobile health care in diabetes management: randomized controlled open-label trial. JMIR Mhealth Uhealth. 2020;8:e19153.

    PubMed  PubMed Central  Google Scholar 

  64. Lim SL, Johal J, Ong KW, Han CY, Chan YH, Lee YM, et al. Lifestyle intervention enabled by mobile technology on weight loss in patients with nonalcoholic fatty liver disease: randomized controlled trial. JMIR Mhealth Uhealth. 2020;8:e14802.

    PubMed  PubMed Central  Google Scholar 

  65. Lunde P, Bye A, Bergland A, Grimsmo J, Jarstad E, Nilsson BB. Long-term follow-up with a smartphone application improves exercise capacity post cardiac rehabilitation: a randomized controlled trial. Eur J Prev Cardiol. 2020;27:1782–92.

    PubMed  PubMed Central  Google Scholar 

  66. Poonprapai P, Lerkiatbundit S, Saengcharoen W. Family support-based intervention using a mobile application provided by pharmacists for older adults with diabetes to improve glycaemic control: a randomised controlled trial. Int J Clin Pharm. 2022;44:680–8.

    CAS  PubMed  Google Scholar 

  67. Takeyama N, Moriyama M, Kazawa K, Steenkamp M, Rahman MM. A health guidance app to improve motivation, adherence to lifestyle changes and indicators of metabolic disturbances among Japanese civil servants. Int J Environ Res Public Health. 2020;17:8147.

  68. Wang S, Li Y, Tian J, Peng X, Yi L, Du C, et al. A randomized controlled trial of brain and heart health manager-led mHealth secondary stroke prevention. Cardiovasc Diagn Ther. 2020;10:1192–9.

    PubMed  PubMed Central  Google Scholar 

  69. Wingo BC, Rinker JR, Goss AM, Green K, Wicks V, Cutter GR, et al. Feasibility of improving dietary quality using a telehealth lifestyle intervention for adults with multiple sclerosis. Mult Scler Relat Disord. 2020;46:102504.

    PubMed  Google Scholar 

  70. Yang Y, Lee EY, Kim HS, Lee SH, Yoon KH, Cho JH. Effect of a mobile phone-based glucose-monitoring and feedback system for type 2 diabetes management in multiple primary care clinic settings: cluster randomized controlled trial. JMIR Mhealth Uhealth. 2020;8:e16266.

    PubMed  PubMed Central  Google Scholar 

  71. Yu C, Liu C, Du J, Liu H, Zhang H, Zhao Y, et al. Smartphone-based application to improve medication adherence in patients after surgical coronary revascularization. Am Heart J. 2020;228:17–26.

    PubMed  Google Scholar 

  72. Yudi MB, Clark DJ, Tsang D, Jelinek M, Kalten K, Joshi SB, et al. SMARTphone-based, early cardiac REHABilitation in patients with acute coronary syndromes: a randomized controlled trial. Coron Artery Dis. 2021;32:432–40.

    PubMed  Google Scholar 

  73. Or CK, Liu K, So MKP, Cheung B, Yam LYC, Tiwari A, et al. Improving self-care in patients with coexisting type 2 diabetes and hypertension by technological surrogate nursing: randomized controlled trial. J Med Internet Res. 2020;22:e16769.

    PubMed  PubMed Central  Google Scholar 

  74. Sun YQ, Jia YP, Lv JY, Ma GJ. The clinical effects of a new management mode for hypertensive patients: a randomized controlled trial. Cardiovasc Diagn Ther. 2020;10:1805–15.

    PubMed  PubMed Central  Google Scholar 

  75. Alonso-Domínguez R, García-Ortiz L, Patino-Alonso MC, Sánchez-Aguadero N, Gómez-Marcos MA, Recio-Rodríguez JI. Effectiveness of a multifactorial intervention in increasing adherence to the mediterranean diet among patients with diabetes mellitus type 2: a controlled and randomized study (EMID Study). Nutrients. 2019;11:162.

  76. Apiñaniz A, Cobos-Campos R, Sáez de Lafuente-Moríñigo A, Parraza N, Aizpuru F, Pérez I, et al. Effectiveness of randomized controlled trial of a mobile app to promote healthy lifestyle in obese and overweight patients. Fam Pr. 2019;36:699–705.

    Google Scholar 

  77. Baron KG, Duffecy J, Richardson D, Avery E, Rothschild S, Lane J. Technology assisted behavior intervention to extend sleep among adults with short sleep duration and prehypertension/stage 1 hypertension: a randomized pilot feasibility study. J Clin Sleep Med. 2019;15:1587–97.

    PubMed  PubMed Central  Google Scholar 

  78. Choi BG, Dhawan T, Metzger K, Marshall L, Akbar A, Jain T, et al. Image-based mobile system for dietary management in an american cardiology population: pilot randomized controlled trial to assess the efficacy of dietary coaching delivered via a smartphone app versus traditional counseling. JMIR Mhealth Uhealth. 2019;7:e10755.

    PubMed  PubMed Central  Google Scholar 

  79. Gonzalez-Sanchez J, Recio-Rodriguez JI, Fernandez-delRio A, Sanchez-Perez A, Magdalena-Belio JF, Gomez-Marcos MA, et al. Using a smartphone app in changing cardiovascular risk factors: a randomized controlled trial (EVIDENT II study). Int J Med Inf. 2019;125:13–21.

    Google Scholar 

  80. Guthrie NL, Berman MA, Edwards KL, Appelbaum KJ, Dey S, Carpenter J, et al. Achieving rapid blood pressure control with digital therapeutics: retrospective cohort and machine learning study. JMIR Cardio. 2019;3:e13030.

    PubMed  PubMed Central  Google Scholar 

  81. Márquez Contreras E, Márquez Rivero S, Rodríguez García E, López-García-Ramos L, Carlos Pastoriza Vilas J, Baldonedo Suárez A, et al. Specific hypertension smartphone application to improve medication adherence in hypertension: a cluster-randomized trial. Curr Med Res Opin. 2019;35:167–73.

    PubMed  Google Scholar 

  82. Patel A, Praveen D, Maharani A, Oceandy D, Pilard Q, Kohli MPS, et al. Association of multifaceted mobile technology-enabled primary care intervention with cardiovascular disease risk management in rural Indonesia. JAMA Cardiol. 2019;4:978–86.

    PubMed  PubMed Central  Google Scholar 

  83. Prabhakaran D, Jha D, Prieto-Merino D, Roy A, Singh K, Ajay VS, et al. Effectiveness of an mHealth-based electronic decision support system for integrated management of chronic conditions in primary care: the mwellcare cluster-randomized controlled trial. Circulation. 2019;139:380–91.

    PubMed  Google Scholar 

  84. Santo K, Singleton A, Rogers K, Thiagalingam A, Chalmers J, Chow CK, et al. Medication reminder applications to improve adherence in coronary heart disease: a randomised clinical trial. Heart. 2019;105:323–9.

    CAS  PubMed  Google Scholar 

  85. Zha P, Qureshi R, Porter S, Chao YY, Pacquiao D, Chase S, et al. Utilizing a mobile health intervention to manage hypertension in an underserved community. West J Nurs Res. 2020;42:201–9.

    PubMed  Google Scholar 

  86. Maddison R, Rawstorn JC, Stewart RAH, Benatar J, Whittaker R, Rolleston A, et al. Effects and costs of real-time cardiac telerehabilitation: randomised controlled non-inferiority trial. Heart. 2019;105:122–9.

    PubMed  Google Scholar 

  87. Yamaguchi S, Waki K, Nannya Y, Nangaku M, Kadowaki T, Ohe K. Usage patterns of gluconote, a self-management smartphone app, based on researchkit for patients with type 2 diabetes and prediabetes. JMIR Mhealth Uhealth. 2019;7:e13204.

    PubMed  PubMed Central  Google Scholar 

  88. Li X, Li T, Chen J, Xie Y, An X, Lv Y, et al. A WeChat-based self-management intervention for community middle-aged and elderly adults with hypertension in guangzhou, china: a cluster-randomized controlled Trial. Int J Environ Res Public Health. 2019;16:4058.

  89. Fukuoka Y, Vittinghoff E, Hooper J. A weight loss intervention using a commercial mobile application in Latino Americans-Adelgaza Trial. Transl Behav Med. 2018;8:714–23.

    PubMed  PubMed Central  Google Scholar 

  90. Morawski K, Ghazinouri R, Krumme A, Lauffenburger JC, Lu Z, Durfee E, et al. Association of a smartphone application with medication adherence and blood pressure control: the MedISAFE-BP randomized clinical trial. JAMA Intern Med. 2018;178:802–9.

    PubMed  PubMed Central  Google Scholar 

  91. Pan F, Wu H, Liu C, Zhang X, Peng W, Wei X, et al. Effects of home telemonitoring on the control of high blood pressure: a randomised control trial in the Fangzhuang Community Health Center, Beijing. Aust J Prim Health. 2018;24:398–403.

    PubMed  Google Scholar 

  92. Rosario MBD, Lovell NH, Fildes J, Holgate K, Yu J, Ferry C, et al. Evaluation of an mHealth-based adjunct to outpatient cardiac rehabilitation. IEEE J Biomed Health Inf. 2018;22:1938–48.

    Google Scholar 

  93. Senecal C, Widmer RJ, Johnson MP, Lerman LO, Lerman A. Digital health intervention as an adjunct to a workplace health program in hypertension. J Am Soc Hypertens. 2018;12:695–702.

    PubMed  Google Scholar 

  94. Tanaka K, Sasai H, Wakaba K, Murakami S, Ueda M, Yamagata F, et al. Professional dietary coaching within a group chat using a smartphone application for weight loss: a randomized controlled trial. J Multidiscip Health. 2018;11:339–47.

    Google Scholar 

  95. Balk-Møller NC, Poulsen SK, Larsen TM. Effect of a nine-month web- and app-based workplace intervention to promote healthy lifestyle and weight loss for employees in the social welfare and health care sector: a randomized controlled trial. J Med Internet Res. 2017;19:e108.

    PubMed  PubMed Central  Google Scholar 

  96. Eyles H, McLean R, Neal B, Jiang Y, Doughty RN, McLean R, et al. A salt-reduction smartphone app supports lower-salt food purchases for people with cardiovascular disease: findings from the SaltSwitch randomised controlled trial. Eur J Prev Cardiol. 2017;24:1435–44.

    PubMed  Google Scholar 

  97. Frias J, Virdi N, Raja P, Kim Y, Savage G, Osterberg L. Effectiveness of digital medicines to improve clinical outcomes in patients with uncontrolled hypertension and type 2 diabetes: prospective, open-label, cluster-randomized pilot clinical trial. J Med Internet Res. 2017;19:e246.

    PubMed  PubMed Central  Google Scholar 

  98. Munster-Segev M, Fuerst O, Kaplan SA, Cahn A. Incorporation of a stress reducing mobile app in the care of patients with type 2 diabetes: a prospective study. JMIR Mhealth Uhealth. 2017;5:e75.

    PubMed  PubMed Central  Google Scholar 

  99. Muntaner-Mas A, Vidal-Conti J, Borràs PA, Ortega FB, Palou P. Effects of a Whatsapp-delivered physical activity intervention to enhance health-related physical fitness components and cardiovascular disease risk factors in older adults. J Sports Med Phys Fit. 2017;57:90–102.

    Google Scholar 

  100. Plotnikoff RC, Wilczynska M, Cohen KE, Smith JJ, Lubans DR. Integrating smartphone technology, social support and the outdoor physical environment to improve fitness among adults at risk of, or diagnosed with, Type 2 Diabetes: Findings from the ‘eCoFit’ randomized controlled trial. Prev Med. 2017;105:404–11.

    PubMed  Google Scholar 

  101. Kim JY, Wineinger NE, Steinhubl SR. The influence of wireless self-monitoring program on the relationship between patient activation and health behaviors, medication adherence, and blood pressure levels in hypertensive patients: a substudy of a randomized controlled trial. J Med Internet Res. 2016;18:e116.

    PubMed  PubMed Central  Google Scholar 

  102. Ong SW, Jassal SV, Miller JA, Porter EC, Cafazzo JA, Seto E, et al. Integrating a smartphone-based self-management system into usual care of advanced CKD. Clin J Am Soc Nephrol. 2016;11:1054–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Paul L, Wyke S, Brewster S, Sattar N, Gill JM, Alexander G, et al. Increasing physical activity in stroke survivors using STARFISH, an interactive mobile phone application: a pilot study. Top Stroke Rehabil. 2016;23:170–7.

    PubMed  Google Scholar 

  104. Willey S, Walsh JK. Outcomes of a mobile health coaching platform: 12-week results of a single-arm longitudinal study. JMIR Mhealth Uhealth. 2016;4:e3.

    PubMed  PubMed Central  Google Scholar 

  105. Zhou W, Chen M, Yuan J, Sun Y. Welltang - A smart phone-based diabetes management application - Improves blood glucose control in Chinese people with diabetes. Diabetes Res Clin Pr. 2016;116:105–10.

    Google Scholar 

  106. Seo WK, Kang J, Jeon M, Lee K, Lee S, Kim JH, et al. Feasibility of using a mobile application for the monitoring and management of stroke-associated risk factors. J Clin Neurol. 2015;11:142–8.

    PubMed  PubMed Central  Google Scholar 

  107. Petrella RJ, Stuckey MI, Shapiro S, Gill DP. Mobile health, exercise and metabolic risk: a randomized controlled trial. BMC Public Health. 2014;14:1082.

    PubMed  PubMed Central  Google Scholar 

  108. Mira JJ, Navarro I, Botella F, Borrás F, Nuño-Solinís R, Orozco D, et al. A Spanish pillbox app for elderly patients taking multiple medications: randomized controlled trial. J Med Internet Res. 2014;16:e99.

    PubMed  PubMed Central  Google Scholar 

  109. Waki K, Fujita H, Uchimura Y, Omae K, Aramaki E, Kato S, et al. DialBetics: a novel smartphone-based self-management support system for type 2 diabetes patients. J Diabetes Sci Technol. 2014;8:209–15.

    PubMed  PubMed Central  Google Scholar 

  110. Widmer RJ, Allison TG, Keane B, Dallas A, Lerman LO, Lerman A. Using an online, personalized program reduces cardiovascular risk factor profiles in a motivated, adherent population of participants. Am Heart J. 2014;167:93–100.

    PubMed  Google Scholar 

  111. Moore JO, Marshall M, Judge D, Moss F, SJ Gilroy, Crocker J, et al. Technology-supported apprenticeship in the management of hypertension: a randomized controlled trial. J Clin Outcomes Manag. 2014;21:110–2.

  112. Logan AG, Irvine MJ, McIsaac WJ, Tisler A, Rossos PG, Easty A, et al. Effect of home blood pressure telemonitoring with self-care support on uncontrolled systolic hypertension in diabetics. Hypertension. 2012;60:51–7.

    CAS  PubMed  Google Scholar 

  113. Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. Cluster-randomized trial of a mobile phone personalized behavioral intervention for blood glucose control. Diabetes Care. 2011;34:1934–42.

    PubMed  PubMed Central  Google Scholar 

  114. Rossi MCE, Nicolucci A, Di Bartolo P, Bruttomesso D, Girelli A, Ampudia FJ, et al. Diabetes Interactive Diary: a new telemedicine system enabling flexible diet and insulin therapy while improving quality of life: an open-label, international, multicenter, randomized study. Diabetes Care. 2010;33:109–15.

    CAS  PubMed  Google Scholar 

  115. Kalagara R, Chennareddy S, Scaggiante J, Matsoukas S, Bhimani A, Smith C, et al. Blood pressure management through application-based telehealth platforms: a systematic review and meta-analysis. J Hypertens. 2022;40:1249–56.

    CAS  PubMed  Google Scholar 

  116. Kassavou A, Wang M, Mirzaei V, Shpendi S, Hasan R. The association between smartphone app-based self-monitoring of hypertension-related behaviors and reductions in high blood pressure: systematic review and meta-analysis. JMIR Mhealth Uhealth. 2022;10:e34767.

    PubMed  PubMed Central  Google Scholar 

  117. Jakob R, Harperink S, Rudolf AM, Fleisch E, Haug S, Mair JL, et al. Factors influencing adherence to mhealth apps for prevention or management of noncommunicable diseases: systematic review. J Med Internet Res. 2022;24:e35371.

    PubMed  PubMed Central  Google Scholar 

  118. Yao Y, Guo Y, Lip GYH. The effects of implementing a mobile health-technology supported pathway on atrial fibrillation-related adverse events among patients with multimorbidity: the mAFA-II randomized clinical trial. JAMA Netw Open. 2021;4:e2140071.

    PubMed  PubMed Central  Google Scholar 

  119. The American Heart Association. Download the HF Helper App. https://www.heart.org/en/health-topics/heart-failure/heart-failure-tools-resources/hf-helper-app. Accessed May 21, 2024.

  120. Siafi E, Konstantinidis D, Andrikou I, Polyzos D, Drogkaris S, Manta E, et al. Blood pressure management with the esh care App – Preliminary results. J Hypertens. 2022;40:e278.

    Google Scholar 

  121. Kotecha D, Chua WWL, Fabritz L, Hendriks J, Casadei B, Schotten U, et al. European Society of Cardiology smartphone and tablet applications for patients with atrial fibrillation and their health care providers. Europace. 2018;20:225–33.

    PubMed  Google Scholar 

  122. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, et al. Trial of intensive blood-pressure control in older patients with hypertension. N. Engl J Med. 2021;385:1268–79.

    CAS  PubMed  Google Scholar 

  123. Fujiwara T, Hoshide S, Kanegae H, Kario K. Cardiovascular event risks associated with masked nocturnal hypertension defined by home blood pressure monitoring in the J-HOP nocturnal blood pressure study. Hypertension. 2020;76:259–66.

    CAS  PubMed  Google Scholar 

  124. Fujiwara T, Yano Y, Hoshide S, Kanegae H, Kario K. Association of cardiovascular outcomes with masked hypertension defined by home blood pressure monitoring in a japanese general practice population. JAMA Cardiol. 2018;3:583–90.

    PubMed  PubMed Central  Google Scholar 

  125. Staplin N, de la Sierra A, Ruilope LM, Emberson JR, Vinyoles E, Gorostidi M, et al. Relationship between clinic and ambulatory blood pressure and mortality: an observational cohort study in 59,124 patients. Lancet. 2023;401:2041–50.

    PubMed  Google Scholar 

  126. McLean G, Band R, Saunderson K, Hanlon P, Murray E, Little P, et al. Digital interventions to promote self-management in adults with hypertension systematic review and meta-analysis. J Hypertens. 2016;34:600–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Tucker KL, Sheppard JP, Stevens R, Bosworth HB, Bove A, Bray EP, et al. Self-monitoring of blood pressure in hypertension: A systematic review and individual patient data meta-analysis. PLoS Med. 2017;14:e1002389.

    PubMed  PubMed Central  Google Scholar 

  128. Shan R, Ding J, Plante TB, Martin SS. Mobile health access and use among individuals with or at risk for cardiovascular disease: 2018 Health Information National Trends Survey (HINTS). J Am Heart Assoc. 2019;8:e014390.

    PubMed  PubMed Central  Google Scholar 

  129. U.S. Food and Drug Administration. Policy for Device Software Functions and Mobile Medical Applications. Guidance for Industry and Food and Drug Administration Staff. 2022. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-device-software-functions-and-mobile-medical-applications).

  130. NS MEDICAL DEVICES. Biospectal gets CE Mark for OptiBP blood pressure monitoring app. https://www.nsmedicaldevices.com/company-news/biospectal-gets-ce-mark-for-optibp-blood-pressure-monitoring-app/. Accessed May 21, 2024.

  131. Degott J, Ghajarzadeh-Wurzner A, Hofmann G, Proença M, Bonnier G, Lemkaddem A, et al. Smartphone based blood pressure measurement: accuracy of the OptiBP mobile application according to the AAMI/ESH/ISO universal validation protocol. Blood Press Monit. 2021;26:441–8.

    PubMed  PubMed Central  Google Scholar 

  132. Hofmann G, Proença M, Degott J, Bonnier G, Lemkaddem A, Lemay M, et al. A novel smartphone app for blood pressure measurement: a proof-of-concept study against an arterial catheter. J Clin Monit Comput. 2023;37:249–59.

    CAS  PubMed  Google Scholar 

  133. Omboni S, Ferrari R. The role of telemedicine in hypertension management: focus on blood pressure telemonitoring. Curr Hypertens Rep. 2015;17:535.

    PubMed  Google Scholar 

  134. Nomura A, Tanigawa T, Kario K, Igarashi A. Cost-effectiveness of digital therapeutics for essential hypertension. Hypertens Res. 2022;45:1538–48.

    PubMed  PubMed Central  Google Scholar 

  135. Murphy AR, Low CA. Another step (count) towards leveraging mobile health data for clinical prediction. Lancet Digit Health. 2021;3:e687–e688.

    CAS  PubMed  Google Scholar 

  136. Nishizawa M, Hoshide S, Okawara Y, Matsuo T, Kario K. Strict blood pressure control achieved using an ICT-based home blood pressure monitoring system in a catastrophically damaged area after a disaster. J Clin Hypertens (Greenwich). 2017;19:26–9.

    PubMed  Google Scholar 

  137. Frandsen TF, Nielsen MFB, Eriksen MB. Avoiding searching for outcomes called for additional search strategies: a study of Cochrane review searches. J Clin Epidemiol. 2022;149:83–8.

    PubMed  Google Scholar 

Download references

Funding

This research was supported by Japan Agency for Medical Research and Development (AMED) (Grant Number 22rea522002h0001) and Fukuoka University (GW2324).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisatomi Arima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Japan Agency for Medical Research and Development (AMED) (Grant Number 22rea522002h0001) and Fukuoka University (GW2324).

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, M., Hirata, T., Morito, N. et al. Smartphone application-based intervention to lower blood pressure: a systematic review and meta-analysis. Hypertens Res 48, 492–505 (2025). https://doi.org/10.1038/s41440-024-01939-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01939-6

Keywords

Search

Quick links