Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tofogliflozin reduces sleep apnea severity in patients with type 2 diabetes mellitus and heart failure: a prospective study

A Comment to this article was published on 16 January 2025

A Comment to this article was published on 20 December 2024

Abstract

Sleep apnea (SA) is prevalent among patients with heart failure (HF) and contributes to a poor prognosis. Sodium–glucose cotransporter 2 (SGLT2) inhibitors have demonstrated efficacy in reducing the risk of serious clinical events in patients with HF. Additionally, SGLT2 inhibitors may reduce the risk of incident SA and mitigate its severity in patients with cardiovascular disease and T2DM. We aimed to investigate whether the SGLT2 inhibitor tofogliflozin reduced the severity of SA, as assessed using the apnea–hypopnea index (AHI), in patients with HF and T2DM and whether a decrease in AHI correlates with changes in body composition and cardiorenal function parameters. This is a single-arm, prospective pathophysiologic study involving patients with HF, T2DM, and SA, defined as having an AHI of 15 events/h and more. SA was assessed using polysomnography. Changes in AHI before and 6 months after starting oral administration of tofogliflozin (20 mg) were assessed. Additionally, body composition and cardiorenal functions were assessed before and 6 months after tofogliflozin administration. Ten patients with HF, T2DM, and SA were finally enrolled (60% men, 66.9 ± 13.4 years). Tofogliflozin reduced AHI from 43.2 [30.2] to 35.3 [13.1] events/h (p = 0.024) at 6 months. Hemoglobin A1c, body weight, and body water content decreased significantly. However, no significant changes were observed in the cardiorenal function parameters. A linear relationship was observed between the changes in body water content and AHI (r = 0.642, p = 0.045). Tofogliflozin reduced AHI, possibly associated with a reduction in body water content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.

    Article  PubMed  Google Scholar 

  2. Ferrier K, Campbell A, Yee B, Richards M, O’Meeghan T, Weatherall M, et al. Sleep-disordered breathing occurs frequently in stable outpatients with congestive heart failure. Chest. 2005;128:2116–22.

    Article  PubMed  Google Scholar 

  3. Wang H, Parker JD, Newton GE, Floras JS, Mak S, Chiu KL, et al. Influence of obstructive sleep apnea on mortality in patients with heart failure. J Am Coll Cardiol. 2007;49:1625–31.

    Article  PubMed  Google Scholar 

  4. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126:1495–510.

    Article  PubMed  Google Scholar 

  5. Sato A, Kato T, Kasai T, Ishiwata S, Shoichiro Y, Hiroki M, et al. Relationship between inflammatory biomarkers and sleep-disordered breathing in patients with heart failure. Sleep Biol Rhythms. 2021;19:55–61.

  6. Kato T, Suda S, Kasai T. Positive airway pressure therapy for heart failure. World J Cardiol. 2014;6:1175–91.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akashiba T, Inoue Y, Uchimura N, Ohi M, Kasai T, Kawana F, et al. Sleep apnea syndrome (SAS) clinical practice guidelines 2020. Respir Investig. 2022;60:3–32.

    Article  PubMed  Google Scholar 

  8. Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest. 2008;133:690–6.

    Article  PubMed  Google Scholar 

  9. Naughton MT, Rahman MA, Hara K, Floras JS, Bradley TD. Effect of continuous positive airway pressure on intrathoracic and left ventricular transmural pressures in patients with congestive heart failure. Circulation. 1995;91:1725–31.

    Article  CAS  PubMed  Google Scholar 

  10. Hall AB, Ziadi MC, Leech JA, Chen SY, Burwash IG, Renaud J, et al. Effects of short-term continuous positive airway pressure on myocardial sympathetic nerve function and energetics in patients with heart failure and obstructive sleep apnea: a randomized study. Circulation. 2014;130:892–901.

    Article  PubMed  Google Scholar 

  11. Kasai T, Bradley TD. Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol. 2011;57:119–27.

    Article  PubMed  Google Scholar 

  12. Naito R, Kasai T, Dohi T, Takaya H, Narui K, Momomura SI. Factors associated with the improvement of left ventricular systolic function by continuous positive airway pressure therapy in patients with heart failure with reduced ejection fraction and obstructive sleep apnea. Front Neurol. 2022;13:781054.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Naito R, Kasai T, Tomita Y, Kasagi S, Narui K, Momomura SI. Clinical outcomes of chronic heart failure patients with unsuppressed sleep apnea by positive airway pressure therapy. Front Cardiovasc Med. 2023;10:1156353.

    Article  PubMed  PubMed Central  Google Scholar 

  14. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  15. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.

    Article  CAS  PubMed  Google Scholar 

  16. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61.

    Article  CAS  PubMed  Google Scholar 

  17. Neeland IJ, Eliasson B, Kasai T, Marx N, Zinman B, Inzucchi SE, et al. The impact of empagliflozin on obstructive sleep apnea and cardiovascular and renal outcomes: an exploratory analysis of the EMPA-REG OUTCOME trial. Diabetes Care. 2020;43:3007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wojeck BS, Inzucchi SE, Neeland IJ, Mancuso JP, Frederich R, Masiukiewicz U, et al. Ertugliflozin and incident obstructive sleep apnea: an analysis from the VERTIS CV trial. Sleep Breath. 2023;27:669–72.

    Article  PubMed  Google Scholar 

  19. Sawada K, Karashima S, Kometani M, Oka R, Takeda Y, Sawamura T, et al. Effect of sodium glucose cotransporter 2 inhibitors on obstructive sleep apnea in patients with type 2 diabetes. Endocr J. 2018;65:461–7.

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa S, Miyake T, Senba H, Sakai T, Furukawa E, Yamamoto S, et al. The effectiveness of dapagliflozin for sleep-disordered breathing among Japanese patients with obesity and type 2 diabetes mellitus. Endocr J. 2018;65:953–61.

    Article  CAS  PubMed  Google Scholar 

  21. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  22. Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Version 2.2. Darien, IL: American Academy of Sleep Medicine; 2015.

  23. Yamada Y, Nishizawa M, Uchiyama T, Kasahara Y, Shindo M, Miyachi M, et al. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health. 2017;14:809.

  24. Ballesteros-Pomar MD, Gonzalez-Arnaiz E, Pintor-de-la Maza B, Barajas-Galindo D, Ariadel-Cobo D, Gonzalez-Roza L, et al. Bioelectrical impedance analysis as an alternative to dual-energy X-ray absorptiometry in the assessment of fat mass and appendicular lean mass in patients with obesity. Nutrition. 2022;93:111442.

    Article  PubMed  Google Scholar 

  25. Shah P, Abel AAI, Boyalla V, Pellicori P, Kallvikbacka-Bennett A, Sze S, et al. A comparison of non-invasive methods of measuring body composition in patients with heart failure: a report from SICA-HF. ESC Heart Fail. 2021;8:3929–34.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Konishi M, Kagiyama N, Kamiya K, Saito H, Saito K, Ogasahara Y, et al. Impact of sarcopenia on prognosis in patients with heart failure with reduced and preserved ejection fraction. Eur J Prev Cardiol. 2021;28:1022–9.

    Article  PubMed  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.

    Article  PubMed  Google Scholar 

  28. Blackman A, Foster GD, Zammit G, Rosenberg R, Aronne L, Wadden T, et al. Effect of liraglutide 3.0 mg in individuals with obesity and moderate or severe obstructive sleep apnea: the SCALE Sleep Apnea randomized clinical trial. Int J Obes. 2016;40:1310–9.

    Article  CAS  Google Scholar 

  29. Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes Vasc Dis Res. 2016;13:119–26.

    Article  CAS  Google Scholar 

  30. Kaku K, Watada H, Iwamoto Y, Utsunomiya K, Terauchi Y, Tobe K, et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: a combined Phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:65.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karg MV, Bosch A, Kannenkeril D, Striepe K, Ott C, Schneider MP, et al. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc Diabetol. 2018;17:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yumino D, Wang H, Floras JS, Newton GE, Mak S, Ruttanaumpawan P, et al. Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction. J Card Fail. 2009;15:279–85.

    Article  PubMed  Google Scholar 

  33. Kasai T, Motwani SS, Elias RM, Gabriel JM, Taranto Montemurro L, Yanagisawa N, et al. Influence of rostral fluid shift on upper airway size and mucosal water content. J Clin Sleep Med. 2014;10:1069–74.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yumino D, Redolfi S, Ruttanaumpawan P, Su MC, Smith S, Newton GE, et al. Nocturnal rostral fluid shift: a unifying concept for the pathogenesis of obstructive and central sleep apnea in men with heart failure. Circulation. 2010;121:1598–605.

    Article  PubMed  Google Scholar 

  35. Kasai T, Motwani SS, Yumino D, Gabriel JM, Montemurro LT, Amirthalingam V, et al. Contrasting effects of lower body positive pressure on upper airways resistance and partial pressure of carbon dioxide in men with heart failure and obstructive or central sleep apnea. J Am Coll Cardiol. 2013;61:1157–66.

    Article  PubMed  Google Scholar 

  36. Kasai T. Fluid retention and rostral fluid shift in sleep-disordered breathing. Curr Hypertens Rev. 2016;12:32–42.

    Article  PubMed  Google Scholar 

  37. da Silva BC, Kasai T, Coelho FM, Zatz R, Elias RM. Fluid redistribution in sleep apnea: therapeutic implications in edematous states. Front Med. 2017;4:256.

    Article  Google Scholar 

  38. Redolfi S, Yumino D, Ruttanaumpawan P, Yau B, Su MC, Lam J, et al. Relationship between overnight rostral fluid shift and obstructive sleep apnea in nonobese men. Am J Respir Crit Care Med. 2009;179:241–6.

    Article  PubMed  Google Scholar 

  39. Oelze M, Kroller-Schon S, Welschof P, Jansen T, Hausding M, Mikhed Y, et al. The sodium–glucose co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity. PLoS ONE. 2014;9:e112394.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li X, Flynn ER, do Carmo JM, Wang Z, da Silva AA, Mouton AJ, et al. Direct cardiac actions of sodium–glucose cotransporter 2 inhibition improve mitochondrial function and attenuate oxidative stress in pressure overload-induced heart failure. Front Cardiovasc Med. 2022;9:859253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mone P, Varzideh F, Jankauskas SS, Pansini A, Lombardi A, Frullone S, et al. SGLT2 inhibition via empagliflozin improves endothelial function and reduces mitochondrial oxidative stress: insights from frail hypertensive and diabetic patients. Hypertension. 2022;79:1633–43.

    Article  CAS  PubMed  Google Scholar 

  42. Chen S, Coronel R, Hollmann MW, Weber NC, Zuurbier CJ. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc Diabetol. 2022;21:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christou K, Moulas AN, Pastaka C, Gourgoulianis KI. Antioxidant capacity in obstructive sleep apnea patients. Sleep Med. 2003;4:225–8.

    Article  PubMed  Google Scholar 

  44. Simiakakis M, Kapsimalis F, Chaligiannis E, Loukides S, Sitaras N, Alchanatis M. Lack of effect of sleep apnea on oxidative stress in obstructive sleep apnea syndrome (OSAS) patients. PLoS ONE. 2012;7:e39172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eisele HJ, Markart P, Schulz R. Obstructive sleep apnea, oxidative stress, and cardiovascular disease: evidence from human studies. Oxid Med Cell Longev. 2015;2015:608438.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hosseini H, Homayouni-Tabrizi M, Amiri H, Safari-Faramani R, Moradi MT, Fadaei R, et al. The effect of continuous positive airway pressure on total antioxidant capacity in obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2022. https://doi.org/10.1007/s11325-022-02733-9.

  47. Christou K, Markoulis N, Moulas AN, Pastaka C, Gourgoulianis KI. Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath. 2003;7:105–10.

    Article  PubMed  Google Scholar 

  48. Peres BU, Allen AJH, Shah A, Fox N, Laher I, Almeida F, et al. Obstructive sleep apnea and circulating biomarkers of oxidative stress: a cross-sectional study. Antioxidants. 2020;9:476.

  49. Jurado-Gamez B, Fernandez-Marin MC, Gomez-Chaparro JL, Munoz-Cabrera L, Lopez-Barea J, Perez-Jimenez F, et al. Relationship of oxidative stress and endothelial dysfunction in sleep apnoea. Eur Respir J. 2011;37:873–9.

    Article  CAS  PubMed  Google Scholar 

  50. Kobayashi S, Susa T, Tanaka T, Wada Y, Okuda S, Doi M, et al. Urinary 8-hydroxy-2′-deoxyguanosine reflects symptomatic status and severity of systolic dysfunction in patients with chronic heart failure. Eur J Heart Fail. 2011;13:29–36.

    Article  CAS  PubMed  Google Scholar 

  51. Shigiyama F, Kumashiro N, Miyagi M, Ikehara K, Kanda E, Uchino H, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16:84.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dekkers CCJ, Petrykiv S, Laverman GD, Cherney DZ, Gansevoort RT, Heerspink HJL. Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers. Diabetes Obes Metab. 2018;20:1988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ito H, Matsumoto S, Izutsu T, Kusano E, Kondo J, Inoue H, et al. Different renoprotective effects of luseogliflozin depend on the renal function at the baseline in patients with type 2 diabetes: a retrospective study during 12 months before and after initiation. PLoS ONE. 2021;16:e0248577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamagishi K, Ohira T, Nakano H, Bielinski SJ, Sakurai S, Imano H, et al. Cross-cultural comparison of the sleep-disordered breathing prevalence among Americans and Japanese. Eur Respir J. 2010;36:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was partly supported by JSPS KAKENHI (Grant Numbers, JP21K08116 and JP21K16034) and a Grant-in-Aid for Scientific Research (Grant Numbers, 20FC1027 and 23FC1031) from the Ministry of Health, Labor and Welfare of Japan, a research grant from the Japanese Center for Research on Women in Sport, Juntendo University. These funding sources did not play any other role in this study.

Author information

Authors and Affiliations

Authors

Contributions

SI contributed to the study. SI and TK contributed to the study design. AS, SS, HM, JS, SY, AM, MS, TK, MH, SN, MK, and FK collected data. SI, RN, KM, and TK performed data and statistical analyses. SI and TK drafted the manuscript. SI, TK, AS, SS, HM, JS, SY, AM, MS, TK, MH, SN, MK, and FK performed critical revision, editing, and approval of the final manuscript. SI, TK, HD, and TM are responsible for the overall content of guarantors.

Corresponding author

Correspondence to Takatoshi Kasai.

Ethics declarations

Conflict of interest

SI and T Kasai contributed to the study design. AS, SS, HM, JS, SY, AM, MS, T Kato, MH, SN, MK, and FK collected data. SI, RN, KM, and T Kasai performed data and statistical analyses. SI and T Kasai drafted the manuscript. SI, T Kasai, AS, SS, HM, JS, SY, AM, MS, T Kato, MH, SN, MK, and FK performed critical revision, editing, and approval of the final manuscript. SI, T Kasai, HD, and TM are responsible for the overall content of guarantors

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiwata, S., Kasai, T., Sato, A. et al. Tofogliflozin reduces sleep apnea severity in patients with type 2 diabetes mellitus and heart failure: a prospective study. Hypertens Res 48, 388–397 (2025). https://doi.org/10.1038/s41440-024-01982-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01982-3

Keywords:

This article is cited by

Search

Quick links