Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats

A Comment to this article was published on 04 March 2025

Abstract

Proteinuria, especially albuminuria, serves as an independent risk factor for progression in cardiovascular and renal diseases. Clinical and experimental studies have demonstrated that renal nerves contribute to renal dysfunction in arterial hypertension (AH). This study hypothesizes that renal nerves mediate the mechanisms of protein endocytosis by proximal tubule epithelial cells (PTEC) and glomerular function; with dysregulation of the renal nerves contributing to proteinuria in Wistar rats with renovascular hypertension (2-kidney, 1-clip model, 2K-1C). Reduced albumin uptake and increased internalization of endocytic receptor megalin in PTEC were found in both the clipped and contralateral kidneys of 2K-1C rats. Renal denervation (DNx) or hydralazine treatment restored these parameters. Moreover, DNx, but not hydralazine, reduced serum creatinine and recovered podocyte numbers in the contralateral kidney of 2K-1C rats. Thus, our data suggest that renal nerves and high arterial pressure contribute to decreased albumin reabsorption by cellular redistribution of megalin in PTEC, while renal nerves remarkably drive glomerular dysfunction in renovascular hypertension, independently of their effect on blood pressure.

Created with BioRender.com

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barroso WKS, Rodrigues CIS, Borbolotto LA, Mota-Gomes MA, Brandão AA, Feitosa AD, et al. Brazilian guidelines of hypertension—2020. Arq Bras Cardiol. 2021;116:516–658.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yugar-Toledo JC, Júnior HM, Gus M, Rosito GB, Scala LC, Muxfeldt ES, et al. Posicionamento brasileiro sobre hipertensão arterial resistente—2020. Arq Bras Cardiol. 2020;114:576–96.

    PubMed  PubMed Central  Google Scholar 

  3. Reyes KG, Rader F. Long-term safety and antihypertensive effects of renal denervation: current insights. Integr Blood Press control. 2023;16:59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Camafort M, Ihm SH, Ruilope LM. Renal denervation for the treatment of hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2023;32:544–50.

    Article  CAS  PubMed  Google Scholar 

  5. Lauder L, Azizi M, Kirtane AJ, Bohm M, Mahfoud F. Device-based therapies for arterial hypertension. Nat Rev Cardiol. 2020;17:614–28.

    Article  PubMed  Google Scholar 

  6. Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Bohm M, et al. Renal denervation update from the international sympathetic nervous system summit: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73:3006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yamazaki D, Konishi Y, Kitada K. Effects of renal denervation on the kidney: albuminuria, proteinuria, and renal function. Hypertens Res. 2024;47:2659–64.

  8. Lees JS, Welsh CE, Celis-Morales CA, Mackay D, Lewsey J, Gray SR, et al. Glomerular filtration rate by differing measures, albuminuria and prediction of cardiovascular disease, mortality and end-stage kidney disease. Nat med. 2019;25:1753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chazot R, Botelho-Neves E, Mariat C, Frésard A, Cavalier E, Lucht F, et al. Cystatin C and urine albumin to creatinine ratio predict 5-year mortality and cardiovascular events in people living with HIV. J Infect Dis. 2021;223:885–92.

    Article  CAS  PubMed  Google Scholar 

  10. Park S, Lee S, Lee A, Paek JH, Chin HJ, Na KY, et al. Preoperative dipstick albuminuria and other urine abnormalities predict acute kidney injury and patient outcomes. Surgery. 2018;163:1178–85.

    Article  PubMed  Google Scholar 

  11. Schmieder RE, Mann JF, Schumacher H, Gao P, Mancia G, Weber MA, et al. Changes in albuminuria predict mortality and morbidity in patients with vascular disease. J Am Soc Nephrol. 2011;22:1353–64.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Toblli JE, Bevione P, Gennaro FD, Madalena L, Cao G, Angerosa M. Understanding the mechanisms of proteinuria: therapeutic implications. Int J Nephrol. 2012;2012:546039.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weisz OA. Endocytic adaptation to functional demand by the kidney proximal tubule. J Physiol. 2021;599:3437–46.

    Article  CAS  PubMed  Google Scholar 

  14. Edwards A, Long KR, Baty CJ, Shipman KE, Weisz OA. Modelling normal and nephrotic axial uptake of albumin and other filtered proteins along the proximal tubule. J Physiol. 2022;600:1933–52.

    Article  CAS  PubMed  Google Scholar 

  15. Rbaibi Y, Long KR, Shipman KE, Ren Q, Baty CJ, Kashlan OB, et al. Megalin, cubilin, and Dab2 drive endocytic flux in kidney proximal tubule cells. Mol Biol Cell. 2023;34:ar74.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Long KR, Rbaibi Y, Kashlan OB, Weisz OA. Receptor-associated protein impairs ligand binding to megalin and megalin-dependent endocytic flux in proximal tubule cells. Am J Physiol Ren Physiol. 2023;325:F457–64.

  17. D’Amico G, Bazzi C. Pathophysiology of proteinuria. Kidney Int. 2003;63:809–25.

    Article  PubMed  Google Scholar 

  18. Lopes NR, Milanez MI, Martins BS, Veiga AC, Ferreira GR, Gomes GN, et al. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflüg Arch. 2020;472:325–34.

    Article  CAS  Google Scholar 

  19. Dickson LE, Wagner MC, Sandoval RM, Molitoris BA. The proximal tubule and albuminuria: really! J Am Soc Nephrol. 2014;25:443–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silva-Aguiar RP, Bezerra NC, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, et al. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem. 2018;293:12749–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ren Q, Weyer K, Rbaibi Y, Long KR, Tan RJ, Nielsen R, et al. Distinct functions of megalin and cubilin receptors in recovery of normal and nephrotic levels of filtered albumin. Am J Physiol Ren Physiol. 2020;318:F1284–F1294.

    Article  CAS  Google Scholar 

  22. Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, et al. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats. Histochem Cell Biol. 2001;116:269–76.

    Article  CAS  PubMed  Google Scholar 

  23. Nishi EE, Lopes NR, Gomes GN, Perry JC, Simões-Sato AY, Naffah-Mazzacoratti MG, et al. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens Res. 2019;42:628–40.

    Article  PubMed  Google Scholar 

  24. Veiga GL, Nishi EE, Estrela HF, Lincevicius GS, Gomes GN, Simões-Sato AY, et al. Total renal denervation reduces sympathoexcitation to different target organs in a model of chronic kidney disease. Auton Neurosci. 2017;204:81–87.

    Article  PubMed  Google Scholar 

  25. de Oliveira TL, Lincevicius GS, Shimoura CG, Simões-Sato AY, Garcia ML, Bergamaschi CT, et al. Effects of renal denervation on cardiovascular, metabolic and renal functions in streptozotocin-induced diabetic rats. Life Sci. 2021;278:119534.

    Article  PubMed  Google Scholar 

  26. Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Investig. 1935;14:443–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Birn H, Christensen EI. Renal albumin absorption in physiology and pathology. Kidney Int. 2006;69:440–9.

    Article  CAS  PubMed  Google Scholar 

  28. Birn H, Nielsen R, Weyer K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int. 2023;104:1069–73.

    Article  CAS  PubMed  Google Scholar 

  29. Kuwahara S, Saito SA. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. Membranes. 2014;4:333–55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Perez Bay AE, Schreiner R, Benedicto I, Marzolo MP, Banfelder J, Weinstein AM, et al. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells. Nat Commun. 2016;7:11550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun J, Hultenby K, Axelsson J, Nordström J, He B, Wernerson A, et al. Proximal tubular expression patterns of megalin and cubilin in proteinuric nephropathies. Kidney Int Rep. 2017;2:721–32.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sun Y, Lu X, Danser AHJ. Megalin: a novel determinant of renin-angiotensin system activity in the kidney? Curr Hypertens Rep. 2020;22:30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: I. the production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med. 1934;59:347–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mulder J, Hokfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2013;304:R675–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Intengan HD, Schiffrin EL. Disparate effects of carvedilol versus metoprolol treatment of stroke-prone spontaneously hypertensive rats on endothelial function of resistance arteries. J Cardiovasc Pharm. 2000;35:763–8.

    Article  CAS  Google Scholar 

  36. Queiroz-Madeira EP, Lara LS, Wengert M, Landgraf SS, Líbano-Soares JD, Zapata-Sudo G, et al. Na(+)-ATPase in spontaneous hypertensive rats: possible AT(1) receptor target in the development of hypertension. Biochim Biophys Acta. 2010;1798:360–6.

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  38. Peres RAS, Silva-Aguiar RP, Teixeira DE, Peruchetti DB, Alves SAS, Leal ABC, et al. Gold nanoparticles reduce tubule-interstitial injury and proteinuria in a murine model of subclinical acute kidney injury. Biochim Biophys Acta Gen Subj. 2023;1867:130314.

    Article  CAS  PubMed  Google Scholar 

  39. Peres RAS, Peruchetti DB, Silva-Aguiar RP, Teixeira DE, Gomes CP, Takiya CM, et al. Rapamycin treatment induces tubular proteinuria: role of megalin-mediated protein reabsorption. Front Pharm. 2023;14:1194816.

    Article  CAS  Google Scholar 

  40. Schuh CD, Polesel M, Platonova E, Haenni D, Gassama A, Tokonami N, et al. Combined structural and functional imaging of the kidney reveals major axial differences in proximal tubule endocytosis. J Am Soc Nephrol. 2018;29:2696–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veiga AC, Milanez MI, Ferreira GR, Lopes NR, Santos CP, De Angelis K, et al. Selective afferent renal denervation mitigates renal and splanchnic sympathetic nerve overactivity and renal function in chronic kidney disease-induced hypertension. J Hypertens. 2020;38:765–73.

    Article  CAS  PubMed  Google Scholar 

  42. Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, et al. IL-4 receptor α chain protects the kidney against tubule-interstitial injury induced by albumin overload. Front Physiol. 2020;11:172.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan L, Gao W, Nguyen BV, Jefferson JR, Liu Y, Fan F, et al. Impaired renal hemodynamics and glomerular hyperfiltration contribute to hypertension-induced renal injury. Am J Physiol Ren Physiol. 2020;319:F624–F635.

    Article  CAS  Google Scholar 

  44. Endres BT, Sandoval RM, Rhodes GJ, Campos-Bilderback SB, Kamocka MM, McDermott-Roe C, et al. Intravital imaging of the kidney in a rat model of salt-sensitive hypertensive. Am J Physiol Ren Physiol. 2017;313:F163–F173.

    Article  CAS  Google Scholar 

  45. Teixeira DE, Peruchetti DB, Souza MC, Henriques MG, Pinheiro AA, Caruso-Neves C. A high salt diet induces tubular damage associated with a pro-inflammatory and pro-fibrotic response in a hypertension-independent manner. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165907.

    Article  CAS  PubMed  Google Scholar 

  46. Fels J, Scharner B, Zarbock R, Guevara IPZ, Lee WK, Barbier OC, et al. Cadmium complexed with β2-microglubulin, albumin and lipocalin-2 rather than metallothionein cause megalin: cubilin dependent toxicity of the renal proximal tubule. Int J Mol Sci. 2019;20:2379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lincevicius GS, Shimoura CG, Nishi EE, Perry JC, Casarini DE, Gomes GN, et al. Aldosterone contributes to sympathoexcitation in renovascular hypertension. Am J Hypertens. 2015;28:1083–90.

    Article  CAS  PubMed  Google Scholar 

  48. Pontes RB, Crajoinas RO, Nishi EE, Oliveira-Sales EB, Girardi AC, Campos RR, et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Ren Physiol. 2015;308:F848–56.

    Article  CAS  Google Scholar 

  49. Shimoura CG, de, Oliveira TL, Lincevicius GS, Crajoinas RO, Oliveira-Sales EB, et al. The total denervation of the ischemic kidney induces differential responses in sodium transporters’ expression in the contralateral kidney in Goldblatt rats. Int J Mol Sci. 2024;25:6962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shipman KE, Baty CJ, Long KR, Rbaibi Y, Cowan IA, Gerges M, et al. Impaired endosome maturation mediates tubular proteinuria in dent disease cell culture and mouse models. J Am Soc Nephrol. 2023;34:619–40.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bobulescu IA, Moe OW. Luminal Na(+)/H (+) exchange in the proximal tubule. Pflug Arch. 2009;458:5–21.

    Article  CAS  Google Scholar 

  52. Fan S, Liu J, Wei Y, Yao J, Cheng J, Tong Y, et al. The interference and elimination of nitrite on determination of total urinary protein by Pyrogallol red-molybdate method. Pract Lab Med. 2024;42:e00436. 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huber TB, Gloy J, Henger A, Schollmeyer P, Greger R, Mundel P, et al. Catecholamines modulate podocyte function. J Am Soc Nephrol. 1998;9:335–45.

    Article  CAS  PubMed  Google Scholar 

  54. Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci. 2022;136:493–520.

    Article  Google Scholar 

  55. Weyer K, Andersen PK, Schmidt K, Mollet G, Antignac C, Birn H, et al. Abolishment of proximal tubule albumin endocytosis does not affect plasma albumin during nephrotic syndrome in mice. Kidney Int. 2018;93:335–42.

    Article  CAS  PubMed  Google Scholar 

  56. Lin H, Geurts F, Hassler L, Batlle D, Colafella KM, Denton KM, et al. Kidney angiotensin in cardiovascular disease: formation and drug targeting. Pharm Rev. 2022;74:462–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez-Maldonado. Pathophysiology of renovascular hypertension. Hypertension. 1991;17:707–19.

    Article  CAS  PubMed  Google Scholar 

  58. Lincevicius GS, Shimoura CG, Nishi EE, de, Oliveira TL, Cespedes JG, et al. Differential effects of renal denervation on arterial baroreceptor function in Goldblatt hypertension model. Auton Neurosci. 2017;208:43–50.

    Article  PubMed  Google Scholar 

  59. Shimoura CG, Lincevicius GS, Nishi EE, Girardi AC, Simon KA, Bergamaschi CT, et al. Increased dietary salt changes baroreceptor sensitivity and intrarenal renin-angiotensin system in Goldblatt hypertension. Am J Hypertens. 2017;30:28–36.

    Article  CAS  PubMed  Google Scholar 

  60. Charlton JR, Tan W, Daouk G, Teot L, Rosen S, Bennett KM, et al. Beyond the tubule: pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am J Phys Ren Phys. 2020;319:F988–F999.

    CAS  Google Scholar 

  61. Christensen EI, Kristoffersen IB, Grann B, Thomsen JS, Andreasen A, Nielsen R. A well-developed endolysosomal system reflects protein reabsorption in segment 1 and 2 of rat proximal tubules. Kidney Int. 2021;99:841–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the expert technical assistance in histological sections preparation of Jacilene Barbosa from the multi-user facility of Infar-UNIFESP, and the English grammar revision of Dr. Alex Dayton from University of Minnesota.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)— Finance Code 001, by the São Paulo Research Foundation (FAPESP 2019/25295-0; 2022/11063-2) and by the Brazilian National Research Council (CNPq 406233/2018-7). ACV was a recipient of FAPESP scholarship (2020/02617-9). RRC and CTB are recipients of the CNPq productive research fellowship. And CCN was supported by CNPq: 46.5656/2014-5 (to CC-N); 30.9112/2021-4 (to CC-N), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro–FAPERJ: E-26/210.046/2023 (CC-N), E-26/200.900/2021 (to CC-N), Rio Network of Innovation in Nanosystems for Health (Nanohealth/FAPERJ): E-26/010.000983/2019 (CC-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Nishi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga, A.C., Silva-Aguiar, R.P., Milanez, M.I.O. et al. Renal nerves and hypertension contribute to impaired proximal tubule megalin-mediated albumin uptake in renovascular hypertensive rats. Hypertens Res 48, 1491–1502 (2025). https://doi.org/10.1038/s41440-025-02100-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02100-7

Keywords

This article is cited by

Search

Quick links