Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Angiotensin III induces disruption of blood-brain barrier integrity in vitro in bEnd.3 brain endothelial cells

Abstract

Hypertension is well-known to cause disruption of the blood-brain barrier (BBB). Angiotensin (Ang) II is one of the major mechanistic factors leading to impairment of BBB integrity under hypertensive states. However, the impact of Ang III, produced by conversion from Ang II, on the BBB remains to be elucidated. Therefore, this study was aimed to evaluate the effect of Ang III on an in vitro model of BBB using mouse brain microvascular endothelial cell line (bEnd.3). Following exposure of bEnd.3 cells to Ang III at doses ranging between 10 and 1000 nM for 6, 12, and 24 h, cell viability, transendothelial electrical resistance (TEER), and permeability of sodium fluorescein (NaFl) tracer were determined. The expression of claudin-5, caveolin-1 (Cav-1) and major facilitator superfamily domain-containing protein 2a (Mfsd2a) were assessed using immunofluorescence and western blotting. Overall decreases in cell viability and TEER and increases in NaFl permeability were observed at all time points following Ang III administration at various doses (P < 0.05, P < 0.01). 12-h treatment of Ang III at 25, 50, and 500 nM doses decreased claudin-5 but increased Cav-1 expression, while Mfsd2a expression decreased significantly by 500 nm Ang III (P < 0.0001). Our data demonstrate for the first time that Ang III leads to alterations in transport of substances across the BBB through both paracellular and transcellular pathways when administered at specific concentrations and durations in in vitro setting which suggests that it may potentially play a role in the disruption of BBB integrity under hypertensive conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25.

    Article  CAS  PubMed  Google Scholar 

  2. Kaya M, Ahishali B. Basic physiology of the blood-brain barrier in health and disease: a brief overview. Tissue Barriers. 2021;9:1840913.

    Article  PubMed  Google Scholar 

  3. Ellison MD, Povlishock JT, Hayes RL. Examination of the blood-to-brain transfer of alpha-aminoisobutyric acid and horseradish peroxidase: regional alterations in blood-brain barrier function following acute hypertension. J Cereb Blood Flow Metab. 1986;6:471–80.

    Article  CAS  PubMed  Google Scholar 

  4. Atış M, Akcan U, Uğur Yılmaz C, Orhan N, Düzgün P, Deniz Ceylan U, et al. Effects of methyl-beta-cyclodextrin on blood-brain barrier permeability in angiotensin II-induced hypertensive rats. Brain Res. 2019;1715:148–55.

    Article  PubMed  Google Scholar 

  5. Hasan-Olive MM, Hansson HA, Enger R, Nagelhus EA, Eide PK. Blood-brain barrier dysfunction in idiopathic intracranial hypertension. J Neuropathol Exp Neurol. 2019;78:808–18.

    Article  CAS  PubMed  Google Scholar 

  6. van den Kerkhof M, de Jong JJA, Voorter PHM, Postma AA, Kroon AA, van Oostenbrugge RJ, et al. Blood-brain barrier integrity decreases with higher blood pressure: A 7T DCE-MRI Study. Hypertension. 2024;81:2162–72.

    Article  PubMed  Google Scholar 

  7. Nag S. Protective effect of flunarizine on blood-brain barrier permeability alterations in acutely hypertensive rats. Stroke. 1991;22:1265–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kaya M, Kalayci R, Küçük M, Arican N, Elmas I, Kudat H, et al. Effect of losartan on the blood-brain barrier permeability in diabetic hypertensive rats. Life Sci. 2003;73:3235–44.

    Article  CAS  PubMed  Google Scholar 

  9. Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, et al. Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension. 2020;76:795–807.

    Article  CAS  PubMed  Google Scholar 

  10. Atis M, Akcan U, Altunsu D, Ayvaz E, Uğur Yılmaz C, Sarıkaya D, et al. Targeting the blood-brain barrier disruption in hypertension by ALK5/TGF-Β type I receptor inhibitor SB-431542 and dynamin inhibitor dynasore. Brain Res. 2022;1794:148071.

    Article  CAS  PubMed  Google Scholar 

  11. Fleegal-DeMotta MA, Doghu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab. 2009;29:640–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tonnaer JA, Engels GM, Wiegant VM, Burbach JP, De Jong W, De Wied D. Proteolytic conversion of angiotensins in rat brain tissue. Eur J Biochem. 1983;131:415–21.

    Article  CAS  PubMed  Google Scholar 

  13. Gammelgaard I, Wamberg S, Bie P. Systemic effects of angiotensin III in conscious dogs during the acute double blockade of the renin-Angiotensin–aldosterone-system. Acta Physiol. 2006;188:129–38.

    Article  CAS  Google Scholar 

  14. Kopf PG, Campbell WB. Endothelial metabolism of angiotensin II to angiotensin III, not angiotensin (1-7), augments the vasorelaxation response in adrenal cortical arteries. Endocrinology. 2013;154:4768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW. Roles of brain Angiotensins II and III in thirst and sodium appetite. Brain Res. 2005;1060:108–17.

    Article  CAS  PubMed  Google Scholar 

  16. Wright JW, Yamamoto BJ, Harding JW. Angiotensin receptor subtype mediated physiologies and behaviors: new discoveries and clinical targets. Prog Neurobiol. 2008;84:157–18.

    Article  CAS  PubMed  Google Scholar 

  17. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science. 1988;242:1444–6.

    Article  CAS  PubMed  Google Scholar 

  18. Clark MA, Nguyen C, Tran H. Angiotensin III induces c-Jun N-terminal kinase leading to the proliferation of rat astrocytes. Neurochem Res. 2012;37:1475–81.

    Article  CAS  PubMed  Google Scholar 

  19. Clark MA, Tran H, Nguyen C. Angiotensin III stimulates ERK1/2 mitogen-activated protein kinases and astrocyte growth in cultured rat astrocytes. Neuropeptides. 2011;45:329–35.

    Article  CAS  PubMed  Google Scholar 

  20. Yugandhar VG, Clark MA. Angiotensin III: a physiological relevant peptide of the renin Angiotensin system. Peptides. 2013;46:26–32.

    Article  CAS  PubMed  Google Scholar 

  21. Nemoto W, Ogata Y, Nakagawasai O, Yaoita F, Tadano T, Tan-No K. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in Angiotensin II- and III-induced nociceptive behavior in mice. Neuropharmacology. 2015;99:221–31.

    Article  CAS  PubMed  Google Scholar 

  22. Xia Y, Lu YW, Hao RJ, Yu GR. Catalpol relieved angiotensin II-induced blood–brain barrier destruction via inhibiting the TLR4 pathway in brain endothelial cells. Pharm Biol. 2022;60:2210–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo S, Som AT, Arai K, Lo EH. Effects of Angiotensin-II on brain endothelial cell permeability via PPARalpha regulation of para- and transcellular pathways. Brain Res. 2019;1722:146353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is increased in Alzheimer’s disease in association with amyloid-β and tau pathology. J Alzheimers Dis. 2017;58:203–14.

    Article  CAS  PubMed  Google Scholar 

  25. Patel JM, Sekharam KM, Block ER. Angiotensin receptor-mediated stimulation of diacylglycerol production in pulmonary artery endothelial cells. Am J Respir Cell Mol Biol. 1991;5:321–7.

    Article  CAS  PubMed  Google Scholar 

  26. Harding JW, Yoshida MS, Dilts RP, Woods TM, Wright JW. Cerebroventricular and intravascular metabolism of [125I]Angiotensins in rat. J Neurochem. 1986;46:1292–7.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J, Pavel J, Macova M, Yu ZX, Imboden H, Ge L, et al. AT1 receptor blockade regulates the local angiotensin II system in cerebral microvessels from spontaneously hypertensive rats. Stroke. 2006;37:1271–6.

    Article  CAS  PubMed  Google Scholar 

  28. Yarid FR, Block ER, MK Raizada. Angiotensin receptors in pulmonary arterial and aortic endothelial cells. Am J Physiol 1989256(Cell Physiol 26). 2005;28:827–36.

    Google Scholar 

  29. de Resende MM, Greene AS. Effect of ANG II on endothelial cell apoptosis and survival and its impact on skeletal muscle angiogenesis after electrical stimulation. Am J Physiol Heart Circ Physiol. 2008;294:H2814–21.

    Article  PubMed  Google Scholar 

  30. Xie YY, Lu YW, Yu GR. The protective effects of hyperoside on Ang II-mediated apoptosis of bEnd.3 cells and injury of blood-brain barrier model in vitro. BMC Complement Med Ther. 2022;22:157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu C, Shen Y, Cavdar O, Huang J, Fang H. Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis. Clin Exp Hypertens. 2023;45:2180019.

    Article  PubMed  Google Scholar 

  32. Kou B, Vatish M, Singer DR. Effects of angiotensin II on human endothelial cells survival signaling pathways and its angiogenic response. Vascul Pharm. 2007;47:199–208.

    Article  CAS  Google Scholar 

  33. Sheng Z, Xu Y, Wang S, Yuan Y, Huang T, Lu P. XPO1-mediated nuclear export of RNF146 protects from Angiotensin II-induced endothelial cellular injury. Biochem Biophys Res Commun. 2018;503:1544–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lu YW, Hao RJ, Wei YY, Yu GR. The protective effect of harpagoside on angiotensin II (Ang II)-induced blood-brain barrier leakage in vitro. Phytother Res. 2021;35:6241–54.

    Article  CAS  PubMed  Google Scholar 

  35. Shi L, Li H, Sun L, Tian C, Li H. Alleviation of angiotensin ii-induced vascular endothelial cell injury through long non-coding RNA tug1 inhibition. Comb Chem High Throughput Screen. 2024;27:1523–32.

    Article  CAS  PubMed  Google Scholar 

  36. Guillot FL, Audus KL. Some characteristics of specific angiotensin II binding sites on bovine brain microvessel endothelial cell monolayers. Peptides. 1991;12:535–40.

    Article  CAS  PubMed  Google Scholar 

  37. Jeong J, Lee J, Lim J, Cho S, An S, Lee M, et al. Soluble RAGE attenuates Ang II-induced endothelial hyperpermeability by disrupting HMGB1-mediated crosstalk between AT1R and RAGE. Exp Mol Med. 2019;51:1–15.

    Article  CAS  PubMed  Google Scholar 

  38. Li CC, Chen WX, Wang J, Xia M, Jia ZC, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suwannasual U, Lucero J, Davis G, McDonald JD, Lund AK. Mixed vehicle emissions induce angiotensin II and cerebral microvascular angiotensin receptor expression in C57Bl/6 mice and promote alterations in integrity in a blood-brain barrier coculture model. Toxicol Sci. 2019;170:525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Lao M, Xu Z, Ding M, Guo S, Li L. Caveolin-1 modulates hypertensive vascular remodeling via regulation of the Notch pathway. Molecular Med Rep. 2020;22:4320–8.

    CAS  Google Scholar 

  41. Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M, Moumdjian R, et al. Angiotensin II controls occludin function and is required for blood-brain barrier maintenance: relevance to multiple sclerosis. J Neurosci. 2007;27:9032–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mohammadi MT, Dehghani GA. Acute hypertension induces brain injury and blood-brain barrier disruption through reduction of claudins mRNA expression in rat. Pathol Res Pr. 2014;210:985–90.

    Article  CAS  Google Scholar 

  43. Chow BW, Gu C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron. 2017;93:1325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, et al. Blood-brain barrier permeability is regulated by lipid transport dependent suppression of caveolae-mediated transcytosis. Neuron. 2017;94:581–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu L, Guo R, Xie Y, Ma M, Ye R, Liu X. Caveolae: molecular insights and therapeutic targets for stroke. Expert Opin Ther Targets. 2015;19:633–50.

    Article  CAS  PubMed  Google Scholar 

  46. Soares ES, Mendonca MC, Irazusta SP, Coope A, Stavale LM, da Cruz-Hofling MA. Evidences of endocytosis via caveolae following blood–brain barrier breakdown by Phoneutria nigriventer spider venom. Toxicol Lett. 2014;229:415–22.

    Article  CAS  PubMed  Google Scholar 

  47. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao C, Ma J, Wang Z, Li H, Shen H, Li X, et al. Mfsd2a attenuates blood-brain barrier disruption after subarachnoid hemorrhage by inhibiting caveolae-mediated transcellular transport in rats. Transl Stroke Res. 2020;11:1012–27.

    Article  PubMed  Google Scholar 

  49. Eser OP, Ocak U, Sherchan P, Gamdzyk M, Tang J, Zhang JH. Overexpression of Mfsd2a attenuates blood-brain barrier dysfunction via Cav-1/Keap-1/Nrf-2/HO-1 pathway in a rat model of surgical brain injury. Exp Neurol. 2020;326:113203.

    Article  Google Scholar 

  50. Perego SM, Raquel HA, Candido VB, Masson GS, Martins MM, Ceroni A, et al. Hypertension depresses but exercise training restores both Mfsd2a expression and blood-brain barrier function within PVN capillaries. Am J Physiol Regul Integr Comp Physiol. 2023;325:R299–R307.

    Article  CAS  PubMed  Google Scholar 

  51. Yu Y, Xue B, Tong L, Bassuk AG, Johnson AK, Wei SG. RORγt Mediates Angiotensin II-Induced Pressor Responses, Microglia Activation, and Neuroinflammation by Disrupting the Blood-Brain Barrier in Rats. J Am Heart Assoc. 2025;14:e040461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the use of the services and facilities of the Koç University Research Center for Translational Medicine (KUTTAM).

Funding

This work was supported by the personal research budget provided by Koç University School of Medicine. The funders had no role in study design, data collection and analysis, publication decisions, or manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kaya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayvaz, E., Topçu, A.U., Duran, E.S. et al. Angiotensin III induces disruption of blood-brain barrier integrity in vitro in bEnd.3 brain endothelial cells. Hypertens Res (2025). https://doi.org/10.1038/s41440-025-02426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41440-025-02426-2

Keywords

Search

Quick links