Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation

Abstract

Plant roots serve as the primary interface between the plant and the soil, encountering numerous challenges ranging from water balance to nutrient uptake. One of the central mechanisms enabling plants to thrive in diverse ecosystems is the building of apoplastic diffusion barriers. These barriers control the flow of solutes into and out of the roots, maintaining water and nutrient homeostasis. In this Review, we summarize recent advances in understanding the establishment, function and ecological significance of root apoplastic diffusion barriers. We highlight the plasticity of apoplastic diffusion barriers under various abiotic stresses such as drought, salinity and nutrient deficiency. We also propose new frontiers by discussing the current bottlenecks in the study of plant apoplastic diffusion barriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of the CS as the endodermal diffusion barrier.
Fig. 2: Overview of SL biogenesis in plant roots.
Fig. 3: Endodermal diffusion barriers control water and nutrient homeostasis.
Fig. 4: The endodermal SL has high plasticity in response to biotic and abiotic cues.

Similar content being viewed by others

References

  1. Barberon, M. & Geldner, N. Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol. 166, 528–537 (2014).

    PubMed  PubMed Central  Google Scholar 

  2. Geldner, N. The endodermis. Annu. Rev. Plant Biol. 64, 531–558 (2013).

    PubMed  Google Scholar 

  3. Naseer, S. et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc. Natl Acad. Sci. USA 109, 10101–10106 (2012).

    PubMed  PubMed Central  Google Scholar 

  4. Serra, O. & Geldner, N. The making of suberin. N. Phytol. 235, 848–866 (2022).

    Google Scholar 

  5. Barberon, M. et al. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164, 447–459 (2016).

    PubMed  Google Scholar 

  6. Doblas, V. G., Geldner, N. & Barberon, M. The endodermis, a tightly controlled barrier for nutrients. Curr. Opin. Plant Biol. 39, 136–143 (2017).

    PubMed  Google Scholar 

  7. Enstone, D. E., Peterson, C. A. & Ma, F. Root endodermis and exodermis: structure, function, and responses to the environment. J. Plant Growth Regul. 21, 335–351 (2002).

    Google Scholar 

  8. Liu, T. & Kreszies, T. The exodermis: a forgotten but promising apoplastic barrier. J. Plant Physiol. 290, 154118 (2023).

    PubMed  Google Scholar 

  9. Caspary, R. Remarks on the protective sheath and the formation of stem and root (translated from German). Jahrb. Wiss. Bot. 4, 101–124 (1865).

    Google Scholar 

  10. Kamiya, T. et al. The MYB36 transcription factor orchestrates Casparian strip formation. Proc. Natl Acad. Sci. USA 112, 10533–10538 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Liberman, L. M., Sparks, E. E., Moreno-Risueno, M. A., Petricka, J. J. & Benfey, P. N. MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proc. Natl Acad. Sci. USA 112, 12099–12104 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Roppolo, D. et al. A novel protein family mediates Casparian strip formation in the endodermis. Nature 473, 380–383 (2011).

    PubMed  Google Scholar 

  13. Hosmani, P. S. et al. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl Acad. Sci. USA 110, 14498–14503 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Gao, Y. Q. et al. A dirigent protein complex directs lignin polymerization and assembly of the root diffusion barrier. Science 382, 464–471 (2023).

    PubMed  Google Scholar 

  15. Lee, Y., Rubio, M. C., Alassimone, J. & Geldner, N. A mechanism for localized lignin deposition in the endodermis. Cell 153, 402–412 (2013).

    PubMed  Google Scholar 

  16. Rojas-Murcia, N. et al. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Proc. Natl Acad. Sci. USA 117, 29166–29177 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Reyt, G. et al. Uclacyanin proteins are required for lignified nanodomain formation within Casparian strips. Curr. Biol. 30, 4103–4111 e4106 (2020).

    PubMed  PubMed Central  Google Scholar 

  18. Durr, J. et al. A novel signaling pathway required for Arabidopsis endodermal root organization shapes the rhizosphere microbiome. Plant Cell Physiol. 62, 248–261 (2021).

    PubMed  PubMed Central  Google Scholar 

  19. Andersen, T. G. et al. Tissue-autonomous phenylpropanoid production is essential for establishment of root barriers. Curr. Biol. 31, 965–977.e965 (2021).

    PubMed  Google Scholar 

  20. Davin, L. B. et al. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science 275, 362–366 (1997).

    PubMed  Google Scholar 

  21. Kim, K. W. et al. Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. J. Biol. Chem. 287, 33957–33972 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Pickel, B. et al. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angew. Chem. Int. Ed. Engl. 49, 202–204 (2010).

    PubMed  Google Scholar 

  23. Pfister, A. et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects. eLife 3, e03115 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Doblas, V. G. et al. Root diffusion barrier control by a vasculature-derived peptide binding to the SGN3 receptor. Science 355, 280–284 (2017).

    PubMed  Google Scholar 

  25. Nakayama, T. et al. A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science 355, 284–286 (2017).

    PubMed  Google Scholar 

  26. Okuda, S. et al. Molecular mechanism for the recognition of sequence-divergent CIF peptides by the plant receptor kinases GSO1/SGN3 and GSO2. Proc. Natl Acad. Sci. USA 117, 2693–2703 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Drapek, C. et al. Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. Nat. Plants 4, 586–595 (2018).

    PubMed  PubMed Central  Google Scholar 

  28. Li, P. et al. Construction of a functional Casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana. Curr. Biol. 28, 2777–2786.e2772 (2018).

    PubMed  Google Scholar 

  29. Ma, Y. et al. Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity. Nat. Plants 10, 1343–1362 (2024).

    PubMed  PubMed Central  Google Scholar 

  30. Fujita, S. et al. SCHENGEN receptor module drives localized ROS production and lignification in plant roots. EMBO J. 39, e103894 (2020).

    PubMed  PubMed Central  Google Scholar 

  31. Barbosa, I. C. R. et al. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat. Commun. 14, 1626 (2023).

    PubMed  PubMed Central  Google Scholar 

  32. Reyt, G. et al. Two chemically distinct root lignin barriers control solute and water balance. Nat. Commun. 12, 2320 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Wang, Z. et al. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. Plant Cell 34, 2948–2968 (2022).

    PubMed  PubMed Central  Google Scholar 

  34. Wang, Z. et al. OsCASP1 is required for Casparian strip formation at endodermal cells of rice roots for selective uptake of mineral elements. Plant Cell 31, 2636–2648 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Zhang, B. et al. Small peptide signaling via OsCIF1/2 mediates Casparian strip formation at the root endodermal and nonendodermal cell layers in rice. Plant Cell 36, 383–403 (2023).

    PubMed Central  Google Scholar 

  36. Xue, B. et al. The OsDIR55 gene increases salt tolerance by altering the root diffusion barrier. Plant J. 118, 1550–1568 (2024).

    PubMed  Google Scholar 

  37. Wang, Y. et al. A dirigent family protein confers variation of Casparian strip thickness and salt tolerance in maize. Nat. Commun. 13, 2222 (2022).

    PubMed  PubMed Central  Google Scholar 

  38. Alcock, T. D. et al. Magnesium and calcium overaccumulate in the leaves of a schengen3 mutant of Brassica rapa. Plant Physiol. 186, 1616–1631 (2021).

    PubMed  PubMed Central  Google Scholar 

  39. Behrisch, R. Zur Kenntnis der Endodermiszelle. Ber. Dtsch. Bot. Ges. 44, 162–164 (1926)

  40. Song, T. et al. A new family of proteins is required for tethering of Casparian strip membrane domain and nutrient homoeostasis in rice. Nat. Plants 9, 1749–1759 (2023).

    PubMed  Google Scholar 

  41. Schmutz, A., Buchala, A. J. & Ryser, U. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiol. 110, 403–411 (1996).

    PubMed  PubMed Central  Google Scholar 

  42. Andersen, T. G., Barberon, M. & Geldner, N. Suberization—the second life of an endodermal cell. Curr. Opin. Plant Biol. 28, 9–15 (2015).

    PubMed  Google Scholar 

  43. Woolfson, K. N., Esfandiari, M. & Bernards, M. A. Suberin biosynthesis, assembly, and regulation. Plants 11, 555 (2022).

    PubMed  PubMed Central  Google Scholar 

  44. Gully, K. et al. The GPAT4/6/8 clade functions in Arabidopsis root suberization nonredundantly with the GPAT5/7 clade required for suberin lamellae. Proc. Natl Acad. Sci. USA 121, e2314570121 (2024).

    PubMed  PubMed Central  Google Scholar 

  45. Shukla, V. & Barberon, M. Building and breaking of a barrier: suberin plasticity and function in the endodermis. Curr. Opin. Plant Biol. 64, 102153 (2021).

    PubMed  Google Scholar 

  46. Yadav, V. et al. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26, 3569–3588 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. Shanmugarajah, K. et al. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci. Rep. 9, 11381 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Shiono, K. et al. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J. 80, 40–51 (2014).

    PubMed  Google Scholar 

  49. Landgraf, R. et al. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm. Plant Cell 26, 3403–3415 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. De Bellis, D. et al. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat. Commun. 13, 1489 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Ursache, R. et al. GDSL-domain proteins have key roles in suberin polymerization and degradation. Nat. Plants 7, 353–364 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Molina, D. et al. MYB68 orchestrates cork differentiation by regulating stem cell proliferation and suberin deposition. Preprint at bioRxiv https://doi.org/10.1101/2024.03.06.583666 (2024).

  53. Alassimone, J. et al. Polarly localized kinase SGN1 is required for Casparian strip integrity and positioning. Nat. Plants 2, 16113 (2016).

    PubMed  Google Scholar 

  54. Pascut, F. C. et al. Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nat. Commun. 12, 4682 (2021).

    PubMed  PubMed Central  Google Scholar 

  55. Su, Y. et al. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat. Plants 9, 1968–1977 (2023).

    PubMed  Google Scholar 

  56. Baxter, I. et al. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet. 5, e1000492 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Wang, F.-L. et al. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis. Dev. Cell 56, 781–794.e786 (2021).

    PubMed  Google Scholar 

  58. Shen, D. et al. The Arabidopsis SGN3/GSO1 receptor kinase integrates soil nitrogen status into shoot development. EMBO J. 43, 2486–2505 (2024).

    PubMed  PubMed Central  Google Scholar 

  59. Shukla, V. et al. Suberin plasticity to developmental and exogenous cues is regulated by a set of MYB transcription factors. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2101730118 (2021).

  60. Binenbaum, J. et al. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nat. Plants 9, 785–802 (2023).

    PubMed  PubMed Central  Google Scholar 

  61. Wang, C. et al. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. Plant J. 104, 241–251 (2020).

    PubMed  Google Scholar 

  62. Cohen, H., Fedyuk, V., Wang, C., Wu, S. & Aharoni, A. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. Plant J. 102, 431–447 (2020).

    PubMed  Google Scholar 

  63. Kosma, D. K. et al. AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types. Plant J. 80, 216–229 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Cannell, N. et al. Multiple metabolic innovations and losses are associated with major transitions in land plant evolution. Curr. Biol. 30, 1783–1800.e1711 (2020).

    PubMed  Google Scholar 

  65. Finkel, O. M. et al. A single bacterial genus maintains root growth in a complex microbiome. Nature 587, 103–108 (2020).

    PubMed  PubMed Central  Google Scholar 

  66. Chiu, C. H., Roszak, P., Orvošová, M. & Paszkowski, U. Arbuscular mycorrhizal fungi induce lateral root development in angiosperms via a conserved set of MAMP receptors. Curr. Biol. 32, 4428–4437 (2022).

    PubMed  Google Scholar 

  67. Gonin, M. et al. Plant microbiota controls an alternative root branching regulatory mechanism in plants. Proc. Natl Acad. Sci. USA 120, e2301054120 (2023).

    PubMed  PubMed Central  Google Scholar 

  68. Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).

    PubMed  Google Scholar 

  69. Harbort, C. J. et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis. Cell Host Microbe 28, 825–837 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Stringlis, I. A. et al. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Natl Acad. Sci. USA 115, E5213–E5222 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Finkel, O. M. et al. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol. 17, e3000534 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Bai, B. et al. The root microbiome: community assembly and its contributions to plant fitness. J. Integr. Plant Biol. 64, 230–243 (2022).

    PubMed  Google Scholar 

  73. Verbon, E. H. et al. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant–rhizobacterium interactions. Mol. Plant 16, 1160–1177 (2023).

    PubMed  Google Scholar 

  74. Froschel, C. et al. Plant roots employ cell-layer-specific programs to respond to pathogenic and beneficial microbes. Cell Host Microbe 29, 299–310 e297 (2021).

    PubMed  Google Scholar 

  75. Krajmalnik-Brown, R., Ilhan, Z.-E., Kang, D.-W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutr. Clin. Pract. 27, 201–214 (2012).

    PubMed  PubMed Central  Google Scholar 

  76. Hadadi, N., Berweiler, V., Wang, H. & Trajkovski, M. Intestinal microbiota as a route for micronutrient bioavailability. Curr. Opin. Endocr. Metab. Res. 20, 100285 (2021).

    PubMed  PubMed Central  Google Scholar 

  77. Salas-Gonzalez, I. et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science https://doi.org/10.1126/science.abd0695 (2021).

  78. Zhou, F. et al. Co-incidence of damage and microbial patterns controls localized immune responses in roots. Cell 180, 440–453.e418 (2020).

    PubMed  PubMed Central  Google Scholar 

  79. Perumalla, C. J., Peterson, C. A. & Enstone, D. E. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniseriate hypodermis and epidermis. Bot. J. Linn. Soc. 103, 93–112 (1990).

    Google Scholar 

  80. Ejiri, M., Fukao, T., Miyashita, T. & Shiono, K. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breed. Sci. 71, 40–50 (2021).

    PubMed  PubMed Central  Google Scholar 

  81. Shiono, K. et al. Microarray analysis of laser-microdissected tissues indicates the biosynthesis of suberin in the outer part of roots during formation of a barrier to radial oxygen loss in rice (Oryza sativa). J. Exp. Bot. 65, 4795–4806 (2014).

    PubMed  Google Scholar 

  82. Ejiri, M. & Shiono, K. Prevention of radial oxygen loss is associated with exodermal suberin along adventitious roots of annual wild species of Echinochloa. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00254 (2019).

  83. Kulichikhin, K., Yamauchi, T., Watanabe, K. & Nakazono, M. Biochemical and molecular characterization of rice (Oryza sativa L.) roots forming a barrier to radial oxygen loss. Plant Cell Environ. 37, 2406–2420 (2014).

    PubMed  Google Scholar 

  84. Kajala, K. et al. Innovation, conservation, and repurposing of gene function in root cell type development. Cell 184, 3333–3348.e3319 (2021).

    PubMed  Google Scholar 

  85. Cantó-Pastor, A. et al. A suberized exodermis is required for tomato drought tolerance. Nat. Plants 10, 118–130 (2024).

    PubMed  PubMed Central  Google Scholar 

  86. Manzano, C. et al. Regulation and function of a polarly localized lignin barrier in the exodermis. Preprint at bioRxiv https://doi.org/10.1101/2022.10.20.513117 (2022).

  87. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    PubMed  PubMed Central  Google Scholar 

  88. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    PubMed  PubMed Central  Google Scholar 

  89. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    PubMed  PubMed Central  Google Scholar 

  90. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    PubMed  Google Scholar 

  91. Zheng, W. et al. Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data. Nat. Methods 21, 279–289 (2024).

    PubMed  PubMed Central  Google Scholar 

  92. Dixon, R. A. & Barros, J. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol. 9, 190215 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Perkins, M., Smith, R. A. & Samuels, L. The transport of monomers during lignification in plants: anything goes but how? Curr. Opin. Biotechnol. 56, 69–74 (2019).

    PubMed  Google Scholar 

  94. Alejandro, S. et al. AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr. Biol. 22, 1207–1212 (2012).

    PubMed  Google Scholar 

  95. Hu, Y. et al. Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nat. Plants 9, 572–587 (2023).

    PubMed  PubMed Central  Google Scholar 

  96. González-Valenzuela, L., Renard, J., Depège-Fargeix, N. & Ingram, G. The plant cuticle. Curr. Biol. 33, R210–R214 (2023).

    PubMed  Google Scholar 

  97. Grienenberger, E. & Quilichini, T. D. The toughest material in the plant kingdom: an update on sporopollenin. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.703864 (2021).

  98. Hao, N. et al. Novel lignin-based extracellular barrier in glandular trichome. Nat. Plants 10, 381–389 (2024).

    PubMed  Google Scholar 

  99. Danila, F. R. et al. Bundle sheath suberisation is required for C4 photosynthesis in a Setaria viridis mutant. Commun. Biol. 4, 254 (2021).

    PubMed  PubMed Central  Google Scholar 

  100. Truskina, J. et al. Anther development in Arabidopsis thaliana involves symplastic isolation and apoplastic gating of the tapetum–middle layer interface. Development https://doi.org/10.1242/dev.200596 (2022).

Download references

Acknowledgements

We apologize to authors whose work is related to apoplastic barriers but cannot be cited in this Review because of limited space or our oversight. This work is supported by the National Natural Science Foundation of China (grant no. 31930024 to D.Y.C.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-Q.G. and D.-Y.C. wrote the draft manuscript. Y.-Q.G. and Y.S. prepared the figures. Y.-Q.G., Y.S. and D.-Y.C. revised the manuscript.

Corresponding author

Correspondence to Dai-Yin Chao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Tonni Andersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YQ., Su, Y. & Chao, DY. Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation. Nat. Plants 10, 1865–1874 (2024). https://doi.org/10.1038/s41477-024-01842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-024-01842-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing