Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Virus-induced gene editing free from tissue culture

Abstract

Virus-induced gene editing (VIGE) has reached an inflection point. Although conceived as an alternative to traditional methods of producing gene-edited plants, VIGE has historically relied on the very technologies it was meant to supersede—specifically, tissue-culture-mediated transgenesis. Recent VIGE innovations, however, have finally proved its viability as an independent method for plant gene editing. Here we discuss the advances in plant genome engineering VIGE may unlock, what progress has been made towards achieving these advances and the challenges that continue to impede that progress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods for VIGE in plants.
Fig. 2: Four strategies for overcoming the problems posed by viral exclusion from the meristem (challenge 1).
Fig. 3: The relative sizes of RNA-guided endonucleases and their viral vectors.
Fig. 4: Methods of introducing viral vectors into plants for VIGE ordered by degree of complexity.

Similar content being viewed by others

References

  1. Chen, Z., Debernardi, J. M., Dubcovsky, J. & Gallavotti, A. Recent advances in crop transformation technologies. Nat. Plants 8, 1343–1351 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Bélanger, J. G., Copley, T. R., Hoyos-Villegas, V., Charron, J.-B. & O’Donoughue, L. A comprehensive review of in planta stable transformation strategies. Plant Methods 20, 79 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maher, M. F. et al. Plant gene editing through de novo induction of meristems. Nat. Biotechnol. 38, 84–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Long, Y., Yang, Y., Pan, G. & Shen, Y. New insights into tissue culture plant-regeneration mechanisms. Front. Plant Sci. 13, 926752 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang, D. et al. Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS ONE 9, e96879 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dale, M. F. B., Robinson, D. J. & Todd, D. Effects of systemic infections with Tobacco rattle virus on agronomic and quality traits of a range of potato cultivars. Plant Pathol. 53, 788–793 (2004).

    Article  Google Scholar 

  7. Hančinský, R., Mihálik, D., Mrkvová, M., Candresse, T. & Glasa, M. Plant viruses infecting Solanaceae family members in the cultivated and wild environments: a review. Plants 9, 667 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siegel, A. Plant-virus-based vectors for gene transfer may be of considerable use despite a presumed high error frequency during RNA synthesis. Plant Mol. Biol. 4, 327–329 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida, T., Ishikawa, M., Toki, S. & Ishibashi, K. Heritable tissue-culture-free gene editing in Nicotiana benthamiana through viral delivery of SpCas9 and sgRNA. Plant Cell Physiol. 65, 1743–1750 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qiao, J.-H. et al. Transgene- and tissue culture-free heritable genome editing using RNA virus-based delivery in wheat. Nat. Plants https://doi.org/10.1038/s41477-025-02023-8 (2025).

  11. Weiss, T. et al. Viral delivery of an RNA-guided genome editor for transgene-free germline editing in Arabidopsis. Nat. Plants 11, 967–976 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bradamante, G., Mittelsten Scheid, O. & Incarbone, M. Under siege: virus control in plant meristems and progeny. Plant Cell 33, 2523–2537 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellison, E. E. et al. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 6, 620–624 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Li, T. et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant 14, 1787–1798 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Edwards, M. C. Mapping of the seed transmission determinants of barley stripe mosaic virus. Mol. Plant. Microbe Interact. 8, 906–915 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Martín-Hernández, A. M. & Baulcombe, D. C. Tobacco rattle virus 16-kilodalton protein encodes a suppressor of RNA silencing that allows transient viral entry in meristems. J. Virol. 82, 4064–4071 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kehr, J. & Kragler, F. Long distance RNA movement. N. Phytol. 218, 29–40 (2018).

    Article  CAS  Google Scholar 

  18. Liu, L. & Chen, X. Intercellular and systemic trafficking of RNAs in plants. Nat. Plants 4, 869–878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ruiz-Medrano, R., Xoconostle-Cázares, B. & Lucas, W. J. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405–4419 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Kehr, J., Morris, R. J. & Kragler, F. Long-distance transported RNAs: from identity to function. Annu. Rev. Plant Biol. 73, 457–474 (2021).

    Article  PubMed  Google Scholar 

  21. Beernink, B. M., Lappe, R. R., Bredow, M. & Whitham, S. A. Impacts of RNA mobility signals on virus induced somatic and germline gene editing. Front. Genome Ed. 4, 925088 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee, H., Baik, J. E. & Kim, K.-N. Development of an efficient and heritable virus-induced genome editing system in Solanum lycopersicum. Hortic. Res. 12, uhae364 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ishibashi, K. et al. Systemic delivery of engineered compact AsCas12f by a positive-strand RNA virus vector enables highly efficient targeted mutagenesis in plants. Front. Plant Sci. 15, 1454554 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, W. et al. Multiplexed promoter and gene editing in wheat using a virus‐based guide RNA delivery system. Plant Biotechnol. J. 20, 2332–2341 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoffmann, G. & Incarbone, M. A resilient bunch: stem cell antiviral immunity in plants. N. Phytol. 241, 1415–1420 (2024).

    Article  CAS  Google Scholar 

  26. Yamagishi, N., Kishigami, R. & Yoshikawa, N. Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant‐breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol. J. 12, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Yamagishi, N., Li, C. & Yoshikawa, N. Promotion of flowering by apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front. Plant Sci. 7, 171 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y. & Valkonen, J. P. T. Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J. Virol. 76, 12981–12991 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Donald, R. G. K. & Jackson, A. O. The barley stripe mosaic virus γb gene encodes a multifunctional cysteine-rich protein that affects pathogenesis. Plant Cell 6, 1593–1606 (2024).

    Google Scholar 

  30. Fu, D.-Q. et al. Enhancement of virus-induced gene silencing in tomato by low temperature and low humidity. Mol. Cells 21, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, D. et al. Heritable gene editing in tomato through viral delivery of isopentenyl transferase and single-guide RNAs to latent axillary meristematic cells. Proc. Natl Acad. Sci. USA 121, e2406486121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, D. et al. Heritable base-editing in Arabidopsis using RNA viral vectors. Plant Physiol. 189, 1920–1924 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang, G. H., Ko, Y. & Lee, J. M. Enhancing virus-mediated genome editing for cultivated tomato through low temperature. Plant Cell Rep. 44, 22 (2025).

    Article  CAS  PubMed  Google Scholar 

  34. Szittya, G. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 22, 633–640 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, M.-R. et al. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 14, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu, Q., Zhao, C., Sun, K., Deng, Y. & Li, Z. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Mol. Plant 16, 616–631 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Ma, X., Zhang, X., Liu, H. & Li, Z. Highly efficient DNA-free plant genome editing using virally delivered CRISPR–Cas9. Nat. Plants 6, 773–779 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Ariga, H., Toki, S. & Ishibashi, K. Potato virus X vector-mediated DNA-free genome editing in plants. Plant Cell Physiol. 61, 1946–1953 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, L. et al. Bamboo mosaic virus ‐mediated transgene‐free genome editing in bamboo. N. Phytol. 245, 1810–1816 (2025).

    Article  CAS  Google Scholar 

  40. Karmakar, S. et al. A miniature alternative to Cas9 and Cas12: transposon‐associated TnpB mediates targeted genome editing in plants. Plant Biotechnol. J. 22, 2950–2953 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaya, H., Ishibashi, K. & Toki, S. A split Staphylococcus aureus Cas9 as a compact genome-editing tool in plants. Plant Cell Physiol. 58, 643–649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 42, 253–264 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Rafiei, F. et al. Facts, uncertainties, and opportunities in wheat molecular improvement. Heredity 133, 371–380 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tamilselvan-Nattar-Amutha, S. et al. Barley stripe mosaic virus-mediated somatic and heritable gene editing in barley (Hordeum vulgare L.). Front. Plant Sci. 14, 1201446 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bennypaul, H. & Gill, U. S. in Plant Gene Silencing (eds Mysore, K. S. & Senthil-Kumar, M.) vol. 2408, 85–93 (Springer US, 2022).

  46. Wren, J. D. et al. Plant virus biodiversity and ecology. PLoS Biol. 4, e80 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mei, Y. et al. Protein expression and gene editing in monocots using foxtail mosaic virus vectors. Plant Direct 3, e00181 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Uranga, M. et al. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector. Plant J. 106, 555–565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, S.-Y. et al. Development of virus-induced genome editing methods in solanaceous crops. Hortic. Res. 11, uhad233 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, N. et al. Development of Beet necrotic yellow vein virus ‐based vectors for multiple‐gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol. J. 17, 1302–1315 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yin, K. et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci. Rep. 5, 14926 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lei, J. et al. Heritable gene editing using FT mobile guide RNAs and DNA viruses. Plant Methods 17, 20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uranga, M., Vazquez-Vilar, M., Orzáez, D. & Daròs, J.-A. CRISPR–Cas12a genome editing at the whole-plant level using two compatible RNA virus vectors. CRISPR J. 4, 761–769 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Gao, Q. et al. Rescue of a plant cytorhabdovirus as versatile expression platforms for planthopper and cereal genomic studies. N. Phytol. 223, 2120–2133 (2019).

    Article  CAS  Google Scholar 

  55. Hu, J. et al. A barley stripe mosaic virus‐based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol. Plant Pathol. 20, 1463–1474 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, H. et al. Development and optimization of a Barley stripe mosaic virus ‐mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol. J. 20, 1018–1020 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ali, Z., Eid, A., Ali, S. & Mahfouz, M. M. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res. 244, 333–337 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Ali, Z. et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 8, 1288–1291 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Ali, Z., Abul-faraj, A., Piatek, M. & Mahfouz, M. M. Activity and specificity of TRV-mediated gene editing in plants. Plant Signal. Behav. 10, e1044191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nagalakshmi, U., Meier, N., Liu, J.-Y., Voytas, D. F. & Dinesh-Kumar, S. P. High-efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant Physiol. 189, 1241–1245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Honig, A. et al. Transient expression of virally delivered meganuclease in planta generates inherited genomic deletions. Mol. Plant 8, 1292–1294 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Marton, I. et al. Nontransgenic genome modification in plant cells. Plant Physiol. 154, 1079–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pflieger, S. et al. The ‘one-step’ bean pod mottle virus (BPMV)-derived vector is a functional genomics tool for efficient overexpression of heterologous protein, virus-induced gene silencing and genetic mapping of BPMV R-gene in common bean (Phaseolus vulgaris L.). BMC Plant Biol. 14, 232 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Leffler for assistance with the figures. This work was supported by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Biological and Environmental Research Program, Award Number DE-SC0018420). Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

A.R.S. conceptualized, drafted and edited the manuscript. D.F.V. helped in conceptualization and provided editorial input.

Corresponding author

Correspondence to Daniel F. Voytas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Yanpeng Wang, Savithramma Dinesh-Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberger, A.R., Voytas, D.F. Virus-induced gene editing free from tissue culture. Nat. Plants 11, 1241–1251 (2025). https://doi.org/10.1038/s41477-025-02025-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02025-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing