Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global evidence for a positive relationship between tree species richness and ecosystem photosynthesis

Abstract

Forest biodiversity plays a critical role in sustaining ecosystem functioning and buffering the effects of increased extreme weather events on forests. A global assessment of the relationship between biodiversity and photosynthesis in natural forest ecosystems, however, remains elusive. We used a large dataset of the richness of tree species from a large number of globally distributed forest plots combined with satellite retrievals of sun-induced chlorophyll fluorescence, a novel proxy for photosynthesis, to evaluate the relationship between forest biodiversity and photosynthesis and its biological mechanisms at the global scale. We found that species richness and photosynthesis were often positively correlated at the global scale, with stronger relationships in tropical forests but weaker associations in high-latitude regions. This positive relationship was mainly driven by a larger role of species richness in increasing maximal photosynthesis than in prolonging the growing season. We also found that higher light capture by increasing the complexity of community structure was the basis of this increase in forest photosynthesis. Forests with high species richness also showed higher foliar nitrogen concentrations and the maximum rate of ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, which are two crucial traits determining photosynthetic capacity. Our observation-based findings of ecosystem carbon uptake responses to changes in biodiversity suggest that the loss of biodiversity may jeopardize ecosystem carbon uptake and the terrestrial carbon sink, and will provide important constraints to Earth-system models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics illustrating how species richness enhances ecosystem photosynthesis.
Fig. 2: Relationships between species richness and photosynthesis in global forests.
Fig. 3: Influences of multiple predictors on ecosystem photosynthesis.
Fig. 4: Global distribution of the predicted relationship between species richness and photosynthesis.
Fig. 5: Associations of species richness with phenological metrics.
Fig. 6: Relationships of species richness with the capture and use of light in ecosystems.

Similar content being viewed by others

Data availability

The species-richness dataset is available via GitHub at https://github.com/petrkeil/global_tree_S. All MODIS datasets used in this study are available via the Land Processes Distributed Active Archive Center at https://lpdaac.usgs.gov/product_search/. The ERA5-Land monthly climatic datasets are available via the Copernicus Climate Change Service at https://cds.climate.copernicus.eu/cdsapp. The Hansen tree-cover datasets are available via Google Earth Engine at https://glad.earthengine.app/view/global-forest-change. The MERIT DEM dataset is available at http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/index.html. The biomass dataset is available via Oak Ridge National Laboratory Distributed Active Archive Center at https://daac.ornl.gov/VEGETATION/guides/Global_Maps_C_Density_2010.html. All the above satellite-based data can also be obtained on Google Earth Engine. The TROPOMI SIF datasets are available via CaltechDATA at https://data.caltech.edu/records/8hm1f-w5492. The soil datasets are available via ISRIC Data Hub at https://data.isric.org/geonetwork/srv/chi/catalog.search#/home. The map of the SSCI is available via Göttingen Research Online at https://doi.org/10.25625/9NPEQA. The GEDI datasets are available via Earth Engine Data Catalog at https://developers.google.com/earth-engine/datasets/catalog/LARSE_GEDI_GEDI02_A_002_MONTHLY. The global maps of foliar N concentration are available via GitHub at https://github.com/abhirupdatta/global_maps_of_plant_traits. The global map of the maximum rate of RuBisCO carboxylation is available via Zenodo at https://doi.org/10.5281/zenodo.5090497. The model-based global tree species diversity map is available via Figshare at https://doi.org/10.6084/m9.figshare.17232491.v2. The GFBI dataset is accessible via Global Forest Biodiversity Initiative at https://www.gfbinitiative.org/. The forest age data are available via Max Planck Institute for Biogeochemistry at https://www.bgc-jena.mpg.de/geodb/projects/FileDetails.php.

Code availability

The codes that support the main findings in this study are available via Figshare at https://doi.org/10.6084/m9.figshare.22191919.v3.

References

  1. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261–264 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    Article  PubMed  Google Scholar 

  6. Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article  PubMed  Google Scholar 

  7. Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Chang. 11, 543–550 (2021).

    Article  Google Scholar 

  8. Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van Der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Fernández-Martínez, M. et al. Diagnosing destabilization risk in global land carbon sinks. Nature https://doi.org/10.1038/s41586-023-05725-1 (2023).

    Article  PubMed  Google Scholar 

  10. IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  11. Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Chang. Biol. 26, 7067–7078 (2020).

    Article  PubMed  Google Scholar 

  12. Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  13. Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article  Google Scholar 

  17. Hooper, D. U. & Vitousek, P. M. The effects of plant composition and diversity on ecosystem processes. Science 277, 1302–1305 (1997).

    Article  CAS  Google Scholar 

  18. Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    Article  PubMed  Google Scholar 

  19. Zuppinger-Dingley, D. et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Dronova, I. & Taddeo, S. Remote sensing of phenology: towards the comprehensive indicators of plant community dynamics from species to regional scales. J. Ecol. https://doi.org/10.1111/1365-2745.13897 (2022).

    Article  Google Scholar 

  21. Duarte, M. M. et al. High tree diversity enhances light interception in tropical forests. J. Ecol. 109, 2597–2611 (2021).

    Article  Google Scholar 

  22. Williams, L. J., Paquette, A., Cavender-Bares, J., Messier, C. & Reich, P. B. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 1, 63 (2017).

    Article  PubMed  Google Scholar 

  23. Chen, X. et al. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature https://doi.org/10.1038/s41586-023-05941-9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen, X., Chen, H. Y. H. & Chang, S. X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nat. Ecol. Evol. 6, 1112–1121 (2022).

    Article  PubMed  Google Scholar 

  25. Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).

    Article  PubMed  Google Scholar 

  26. Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Miao, W. et al. Effects of biodiversity, stand factors and functional identity on biomass and productivity during the restoration of subtropical forests in Central China. J. Plant Ecol. 15, 385–398 (2022).

    Article  Google Scholar 

  28. Lepš, J. What do the biodiversity experiments tell us about consequences of plant species loss in the real world? Basic Appl. Ecol. 5, 529–534 (2004).

    Article  Google Scholar 

  29. Wardle, D. A. & Jonsson, M. Biodiversity effects in real ecosystems – a response to Duffy. Front. Ecol. Environ. 8, 10–11 (2010).

    Article  Google Scholar 

  30. Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems? J. Veg. Sci. 27, 646–653 (2016).

    Article  Google Scholar 

  31. Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).

    Article  PubMed  Google Scholar 

  32. Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).

    Article  PubMed  Google Scholar 

  33. Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl Acad. Sci. USA 111, E1327–E1333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeng, Y. et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 3, 477–493 (2022).

    Article  Google Scholar 

  35. Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, 1–6 (2017).

    Article  Google Scholar 

  36. Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01831-x (2022).

    Article  PubMed  Google Scholar 

  37. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  38. Liu, D., Wang, T., Peñuelas, J. & Piao, S. Drought resistance enhanced by tree species diversity in global forests. Nat. Geosci. https://doi.org/10.1038/s41561-022-01026-w (2022).

    Article  Google Scholar 

  39. Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ratcliffe, S. et al. Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecol. Lett. 20, 1414–1426 (2017).

    Article  PubMed  Google Scholar 

  41. Searle, E. B. & Chen, H. Y. H. Complementarity effects are strengthened by competition intensity and global environmental change in the central boreal forests of Canada. Ecol. Lett. 23, 79–87 (2020).

    Article  PubMed  Google Scholar 

  42. Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wolf, A. A., Zavaleta, E. S. & Selmants, P. C. Flowering phenology shifts in response to biodiversity loss. Proc. Natl Acad. Sci. USA 114, 3463–3468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gough, C. M., Atkins, J. W., Fahey, R. T. & Hardiman, B. S. High rates of primary production in structurally complex forests. Ecology 100, 1–6 (2019).

    Article  Google Scholar 

  46. Zhang, L., Liu, X., Zhou, S. & Shipley, B. Explaining variation in productivity requires intraspecific variability in plant height among communities. J. Plant Ecol. 15, 310–319 (2022).

    Article  Google Scholar 

  47. Godlee, J. L. et al. Structural diversity and tree density drives variation in the biodiversity–ecosystem function relationship of woodlands and savannas. New Phytol. 232, 579–594 (2021).

    Article  PubMed  Google Scholar 

  48. Fahey, R. T. et al. Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecol. Lett. 22, 2049–2059 (2019).

    Article  PubMed  Google Scholar 

  49. Ishii, H. & Asano, S. The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol. Res. 25, 715–722 (2010).

    Article  Google Scholar 

  50. Williams, L. J. et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 24, 996–1006 (2021).

    Article  PubMed  Google Scholar 

  51. Williams, L. J., Cavender-Bares, J., Paquette, A., Messier, C. & Reich, P. B. Light mediates the relationship between community diversity and trait plasticity in functionally and phylogenetically diverse tree mixtures. J. Ecol. 108, 1617–1634 (2020).

    Article  Google Scholar 

  52. He, M. et al. Global spectrum of vegetation light‐use efficiency. Geophys. Res. Lett. 49, 1–9 (2022).

    Article  Google Scholar 

  53. Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).

    Article  Google Scholar 

  54. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, J. M. et al. Global datasets of leaf photosynthetic capacity for ecological and earth system research. Earth Syst. Sci. Data Discuss. 2022, 1–26 (2022).

    Google Scholar 

  56. Luo, X. et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat. Commun. 12, 1–10 (2021).

    Article  Google Scholar 

  57. Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).

    Article  PubMed  Google Scholar 

  58. Guiz, J. et al. Long-term effects of plant diversity and composition on plant stoichiometry. Oikos 125, 613–621 (2016).

    Article  CAS  Google Scholar 

  59. Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 5, 184–194 (2021).

    Article  PubMed  Google Scholar 

  60. Peñuelas, J. et al. The bioelements, the elementome, and the biogeochemical niche. Ecology 100, 1–15 (2019).

    Article  Google Scholar 

  61. Fernández-Martínez, M. et al. Bryophyte C:N:P stoichiometry, biogeochemical niches and elementome plasticity driven by environment and coexistence. Ecol. Lett. 24, 1375–1386 (2021).

    Article  PubMed  Google Scholar 

  62. Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 1–10 (2019).

    Article  CAS  Google Scholar 

  63. Zhang, W. P. et al. Interspecific interactions affect N and P uptake rather than N:P ratios of plant species: evidence from intercropping. J. Plant Ecol. 15, 223–236 (2022).

    Article  CAS  Google Scholar 

  64. Cavender-Bares, J. et al. Integrating remote sensing with ecology and evolution to advance biodiversity conservation. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01702-5 (2022).

    Article  PubMed  Google Scholar 

  65. Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 5691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pau, S., Gillespie, T. W. & Wolkovich, E. M. Dissecting NDVI-species richness relationships in Hawaiian dry forests. J. Biogeogr. 39, 1678–1686 (2012).

    Article  Google Scholar 

  67. Madonsela, S., Cho, M. A., Ramoelo, A., Mutanga, O. & Naidoo, L. Estimating tree species diversity in the savannah using NDVI and woody canopy cover. Int. J. Appl. Earth Obs. Geoinf. 66, 106–115 (2018).

    Google Scholar 

  68. Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).

    Article  Google Scholar 

  69. Zhang, Z., Zhang, Y. & Zhang, Y. Generating high-resolution total canopy SIF emission from TROPOMI data: algorithm and application. Remote Sens. Environ. 295, 113699 (2023).

    Article  Google Scholar 

  70. Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make ‘Functional Types’ more functional. Glob. Chang. Biol. 28, 2541–2554 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Chang. Biol. 24, 35–54 (2018).

    Article  PubMed  Google Scholar 

  72. Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 6, 1032–1036 (2016).

    Article  Google Scholar 

  73. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).

    Article  CAS  Google Scholar 

  76. Luby, I. H., Miller, S. J. & Polasky, S. When and where to protect forests. Nature 609, 89–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Yang, X. et al. Global patterns of potential future plant diversity hidden in soil seed banks. Nat. Commun. 12, 1–8 (2021).

    Article  Google Scholar 

  78. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nat. Plants 7, 998–1009 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 456–10,463 (2018).

    Article  Google Scholar 

  82. Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, 1–7 (2020).

    Article  Google Scholar 

  83. Ryu, Y., Jiang, C., Kobayashi, H. & Detto, M. MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5 km resolution from 2000. Remote Sens. Environ. 204, 812–825 (2018).

    Article  Google Scholar 

  84. Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).

    Article  Google Scholar 

  85. Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).

    Article  Google Scholar 

  86. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).

    Article  CAS  Google Scholar 

  87. Roerink, G. J., Menenti, M. & Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 21, 1911–1917 (2000).

    Article  Google Scholar 

  88. Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).

    Article  Google Scholar 

  89. Zhang, Z. et al. Sensitivity of estimated total canopy SIF emission to remotely sensed LAI and BRDF products. J. Remote Sens. 2021, 1–18 (2021).

    Article  Google Scholar 

  90. Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: an indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).

    Article  Google Scholar 

  91. Moreno-Martínez, Á. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sens. Environ. 218, 69–88 (2018).

    Article  Google Scholar 

  92. Yang, H. et al. Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proc. Natl Acad. Sci. USA 119, e2101388119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marselis, S. M., Keil, P., Chase, J. M. & Dubayah, R. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environ. Res. Lett. 17, 045003 (2022).

    Article  Google Scholar 

  94. Ehbrecht, M. et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 12, 1–12 (2021).

    Article  Google Scholar 

  95. Zhai, L., Coyle, D. R., Li, D. & Jonko, A. Fire, insect and disease-caused tree mortalities increased in forests of greater structural diversity during drought. J. Ecol. https://doi.org/10.1111/1365-2745.13830 (2022).

  96. Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data 13, 4881–4896 (2021).

    Article  Google Scholar 

  97. Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article  Google Scholar 

  98. Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Norton, A. J. et al. Hydrologic connectivity drives extremes and high variability in vegetation productivity across Australian arid and semi-arid ecosystems. Remote Sens. Environ. 272, 112937 (2022).

    Article  Google Scholar 

  100. Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation of China (42125105), the Spanish Government TED2021-132627B-I00 funded by MCIN/AEI/10.13039/501100011033 and the European NextGenerationEU/PRTR, the Fundación Ramón Areces grant CIVP20A6621 and the Catalan government project SGR2021-01333. M.F.-M. was supported by the European Research Council project ERC-StG-2022-101076740 STOIKOS and a Ramón y Cajal fellowship (RYC2021-031511-I) funded by the Spanish Ministry of Science and Innovation, the NextGenerationEU program of the European Union, the Spanish plan of recovery, transformation and resilience and the Spanish Agency of Research.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. designed the research. R.C. performed the analysis. R.C. and Y.Z. drafted the paper. J.P., Z.Z., and M.F.-M. contributed to the interpretation of the results and to the writing of the paper. W.J. and G.L. contributed to the writing of the paper.

Corresponding authors

Correspondence to Yongguang Zhang or Josep Peñuelas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Arthur Gessler, Xiaojuan Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Zhang, Y., Fernández-Martínez, M. et al. Global evidence for a positive relationship between tree species richness and ecosystem photosynthesis. Nat. Plants 11, 1429–1440 (2025). https://doi.org/10.1038/s41477-025-02046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41477-025-02046-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing