Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

npj Biofilms and Microbiomes
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. npj biofilms and microbiomes
  3. articles
  4. article
The ppGpp-HpaR1-gum regulatory pathway modulates exopolysaccharides production in Xanthomonas campestris pv. campestris
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

The ppGpp-HpaR1-gum regulatory pathway modulates exopolysaccharides production in Xanthomonas campestris pv. campestris

  • Kaihong Bai1,2 na1,
  • Xiaoli Xu2 na1,
  • Chengxuan Yu2,
  • Huayu Yan2,
  • Miaomiao Lyu1,
  • Na Jiang2,
  • Jianqiang Li2,
  • Jingnan Zhang1,
  • Zhenlong Wang1 &
  • …
  • Laixin Luo2 

npj Biofilms and Microbiomes , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Bacteria
  • Biofilms

Abstract

Exopolysaccharides (EPS) are critical components of the biofilm matrix, and ppGpp has been demonstrated to positively influence biofilm formation. Here, we elucidate the underlying mechanism by which ppGpp regulates EPS production by facilitating HpaR1 to modulate the expression of the gum cluster in the phytopathogen Xanthomonas campestris pv. campestris (Xcc). ppGpp affected the yield of EPS without influencing its primary or advanced structure, as confirmed by Fourier transform infrared spectroscopy and scanning electron microscopy. Expression of the gum cluster, which governs EPS biosynthesis in Xcc, was down-regulated in the ppGpp-deficient mutant (ΔrelAΔspoT) compared to the wild type (WT). Comparison of EPS production between knock-out mutants of the gum cluster and ppGpp-deficient mutant revealed that the gum cluster was a key determinant of EPS production, with ppGpp acting upstream of the gum cluster. Transcriptomic and qPCR analyses indicated that ppGpp modulated global transcription in Xcc, positively regulating expression of hpaR1, which encodes the transcription factor for the gum cluster. This regulatory role was further substantiated by electrophoretic mobility shift assays, which showed that ppGpp enhanced the DNA-binding activity of HpaR1. Furthermore, genetic complementation with hpaR1 restored EPS production, confirming its functional role in this regulatory pathway. In summary, these findings provide novel insights into the molecular mechanisms linking ppGpp signaling to EPS production in X. campestris pv. campestris.

Data availability

The RNA-seq raw data of this study has been deposited in the Sequence Read Archive (SRA) database under accession number PRJNA1011498 (https://www.ncbi.nlm.nih.gov/bioproject/ PRJNA1011498).

References

  1. Kaur, N. & Dey, P. Bacterial exopolysaccharides as emerging bioactive macromolecules: from fundamentals to applications. Res. Microbiol. 174, 104024 (2023).

    Google Scholar 

  2. Bagnol, R., Grijpma, D., Eglin, D. & Moriarty, T. F. The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohyd. Polym. 291, 119550 (2022).

    Google Scholar 

  3. Pammel, L. H. Bacteriosis of rutabaga (Bacillus campestris n. sp.). Iowa State Coll. Agric. Exp. Stn. Bull. 27, 130–134 (1894).

    Google Scholar 

  4. Williams, P. H. Black rot: a continuing threat to the world crucifers. Plant Dis. 64, 736–742 (1980).

    Google Scholar 

  5. Alvarez, A. M. In Mechanisms of Resistance to Plant Diseases (eds Slusarenko, A. J., Fraser, R. S. S. & van Loon, L. C.) 21–52 (Springer Netherlands, 2000).

  6. Qiu, J. & He, Y. Advances in applications and research of xanthan gum. Acta Laser Biol. Sin. 28, 385–393 (2019).

    Google Scholar 

  7. Yun, M. H. et al. Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol. 141, 178–187 (2006).

    Google Scholar 

  8. Kakkar, A., Nizampatnam, N. R., Kondreddy, A., Pradhan, B. B. & Chatterjee, S. Xanthomonas campestris cell–cell signaling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J. Exp. Bot. 66, 6697–6714 (2015).

    Google Scholar 

  9. Ielpi, L., Couso, R. O. & Dankert, M. A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175, 2490–2500 (1993).

    Google Scholar 

  10. Katzen, F., Becker, A., Zorreguieta, A., Pühler, A. & Ielpi, L. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J. Bacteriol. 178, 4313–4318 (1996).

    Google Scholar 

  11. Galván, E. M. et al. Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB. Glycobiology 23, 259–272 (2013).

    Google Scholar 

  12. Katzen, F. et al. Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence. J. Bacteriol. 180, 1607–1617 (1998).

    Google Scholar 

  13. Tang, J. et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol. Gen. Genet. 226, 409–417 (1991).

    Google Scholar 

  14. Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J. & Dow, J. M. A two-component system involving an HD-GYP domain protein links cell–cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol. Microbiol. 38, 986–1003 (2000).

    Google Scholar 

  15. Barber, C. E. et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol. Microbiol. 24, 555–566 (1997).

    Google Scholar 

  16. Chin, K.-H. et al. The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J. Mol. Biol. 396, 646–662 (2010).

    Google Scholar 

  17. Tao, F., He, Y.-W., Wu, D.-H., Swarup, S. & Zhang, L.-H. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J. Bacteriol. 192, 1020–1029 (2010).

    Google Scholar 

  18. de Crecy-Lagard, V. et al. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. J. Bacteriol. 172, 5877–5883 (1990).

    Google Scholar 

  19. Su, H.-Z. et al. Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris. Sci. Rep. 6, 19862 (2016).

    Google Scholar 

  20. Atkinson, G. C., Tenson, T. & Hauryliuk, V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE 6, e23479 (2011).

    Google Scholar 

  21. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015).

    Google Scholar 

  22. Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

    Google Scholar 

  23. Ronneau, S. & Hallez, R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria. FEMS Microbiol. Rev. 43, 389–400 (2019).

    Google Scholar 

  24. Xiao, H. et al. Residual guanosine 3’,5’-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990 (1991).

    Google Scholar 

  25. Srivatsan, A. & Wang, J. D. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11, 100–105 (2008).

    Google Scholar 

  26. Liu, K., Bittner, A. N. & Wang, J. D. Diversity in (p)ppGpp metabolism and effectors. Curr. Opin. Microbiol. 24, 72–79 (2015).

    Google Scholar 

  27. Bai, K. et al. RNA-Seq analysis discovers the critical role of Rel in ppGpp synthesis, pathogenicity, and the VBNC state of Clavibacter michiganensis. Phytopathology 112, 1844–1858 (2022).

    Google Scholar 

  28. Bai, K. et al. The role of RelA and SpoT on ppGpp production, stress response, growth regulation and pathogenicity in Xanthomonas campestris pv. campestris. Microbiol. Spectr. 9, e02057–02021 (2021).

    Google Scholar 

  29. Wang, J., Gardiol, N., Burr, T., Salmond, G. P. & Welch, M. RelA-dependent (p)ppGpp production controls exoenzyme synthesis in Erwinia carotovora subsp. atroseptica. J. Bacteriol. 189, 7643–7652 (2007).

    Google Scholar 

  30. Yang, H. W., Yu, M., Lee, J. H., Chatnaparat, T. & Zhao, Y. The stringent response regulator (p) ppGpp mediates virulence gene expression and survival in Erwinia amylovora. BMC Genomics 21, 261 (2020).

    Google Scholar 

  31. Zhang, Y., Teper, D., Xu, J. & Wang, N. Stringent response regulators (p)ppGpp and DksA positively regulate virulence and host adaptation of Xanthomonas citri. Mol. Plant Pathol. 20, 1550–1565 (2019).

    Google Scholar 

  32. Xu, X. et al. Bacterial alarmone (p)ppGpp mediates the pathogenicity of Clavibacter michiganensis via a dual mechanism that affects both enzyme production and the Tat secretion system. mSystems 10, e0013525 (2025).

  33. Lemos, J. A. C., Brown, T. A. & Burne, R. A. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immu. 72, 1431–1440 (2004).

    Google Scholar 

  34. Ge, X. et al. Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP). Antimicrob. Agents Ch. 62, e00957–18 (2018).

    Google Scholar 

  35. Gupta, K. R., Kasetty, S. & Chatterji, D. Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Appl. Environ. Microb. 81, 2571–2578 (2015).

    Google Scholar 

  36. Nguyen, D. et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986 (2011).

    Google Scholar 

  37. Taylor, C. M. et al. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J. Bacteriol. 184, 621–628 (2002).

    Google Scholar 

  38. Li, W., Liu, M., Siddique, M. S., Graham, N. & Yu, W. Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification. Environ. Pollut. 280, 116998 (2021).

    Google Scholar 

  39. Guibaud, G., Comte, S., Bordas, F., Dupuy, S. & Baudu, M. Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59, 629–638 (2005).

    Google Scholar 

  40. Liao, B. Q., Allen, D. G., Droppo, I. G., Leppard, G. G. & Liss, S. N. Surface properties of sludge and their role in bioflocculation and settleability. Water Res 35, 339–350 (2001).

    Google Scholar 

  41. Zhang, P. et al. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics. Sci. Rep. 5, 12041 (2015).

    Google Scholar 

  42. Pandian, V., Babinastarlin, S., Shankar, T., Sivakumar, T. & Kasirajan, A. Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv. Biol. Res. 5, 71–76 (2011).

    Google Scholar 

  43. Vinothkanna, A. et al. Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from Indian polyherbal fermented traditional medicine. Int. J. Biol. Macromol. 174, 144–152 (2021).

    Google Scholar 

  44. An, S.-Q. et al. Systematic mutagenesis of all predicted gntR genes in Xanthomonas campestris pv. campestris reveals a GntR family transcriptional regulator controlling hypersensitive response and virulence. Mol. Plant Microbe . 24, 1027–1039 (2011).

    Google Scholar 

  45. Valentini, M. & Filloux, A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291, 12547–12555 (2016).

    Google Scholar 

  46. Ryan, R. P. et al. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol. Microbiol. 63, 429–442 (2006).

    Google Scholar 

  47. Hallez, R., Delaby, M., Sanselicio, S. & Viollier, P. H. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat. Rev. Microbiol. 15, 137–148 (2017).

    Google Scholar 

  48. Shyp, V. et al. Reciprocal growth control by competitive binding of nucleotide second messengers to a metabolic switch in Caulobacter crescentus. Nat. Microbiol. 6, 59–72 (2021).

    Google Scholar 

  49. Fung, D. K., Trinquier, A. E. & Wang, J. D. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr. Opin. Microbiol. 76, 102398 (2023).

    Google Scholar 

  50. Turner, P., Barber, C. & Daniels, M. Behaviour of the transposons Tn5 and Tn7 in Xanthomonas campestris pv. campestris. Mol. Gen. Genet. 195, 101–107 (1984).

    Google Scholar 

  51. Zhang, Y., Zhang, Y., Zhang, B., Wu, X. & Zhang, L. Q. Effect of carbon sources on production of 2,4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Acta Microbiol. Sin. 58, 1202–1212 (2018).

    Google Scholar 

  52. Kessler, B., de Lorenzo, V. & Timmis, K. N. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the Tol plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233, 293–301 (1992).

    Google Scholar 

  53. Berg, T., Tesoriero, L. & Hailstones, D. L. PCR-based detection of Xanthomonas campestris pathovars in Brassica seed. Plant Pathol. 54, 416–427 (2005).

    Google Scholar 

  54. Staskawicz, B., Dahlbeck, D., Keen, N. & Napoli, C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J. Bacteriol. 169, 5789–5794 (1987).

    Google Scholar 

  55. Osbourn, A. E., Clarke, B. R., Stevens, B. J. H. & Daniels, M. J. Use of oligonucleotide probes to identify members of two-component regulatory systems in Xanthomonas campestris pathor campestris. Mol. Gen. Genet. 222, 145–151 (1990).

    Google Scholar 

  56. Bai, K. et al. Transcriptional profiling of Xanthomonas campestris pv. campestris in viable but nonculturable state. BMC Genomics 24, 105 (2023).

    Google Scholar 

  57. Radonic, A. et al. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Bioph. Res. Co. 313, 856–862 (2004).

    Google Scholar 

  58. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 2002–2007 (2001).

    Google Scholar 

  59. Bai, K. et al. Evaluation of optimal reference genes for the normalization by qPCR in viable but nonculturable state in Xanthomonas campestris pv. campestris. J. Phytopathol. 170, 399–407 (2022).

    Google Scholar 

  60. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2010).

    Google Scholar 

  61. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Google Scholar 

  62. Han, C. et al. Majorbio Cloud 2024: update single-cell and multiomics workflows. iMeta 3, e217 (2024).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (number 252300423649) and the Beijing Municipal Natural Science Foundation (number 6222025).

Author information

Author notes
  1. These authors contributed equally: Kaihong Bai, Xiaoli Xu.

Authors and Affiliations

  1. School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China

    Kaihong Bai, Miaomiao Lyu, Jingnan Zhang & Zhenlong Wang

  2. Department of Plant Pathology, China Agricultural University, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, Beijing, China

    Kaihong Bai, Xiaoli Xu, Chengxuan Yu, Huayu Yan, Na Jiang, Jianqiang Li & Laixin Luo

Authors
  1. Kaihong Bai
    View author publications

    Search author on:PubMed Google Scholar

  2. Xiaoli Xu
    View author publications

    Search author on:PubMed Google Scholar

  3. Chengxuan Yu
    View author publications

    Search author on:PubMed Google Scholar

  4. Huayu Yan
    View author publications

    Search author on:PubMed Google Scholar

  5. Miaomiao Lyu
    View author publications

    Search author on:PubMed Google Scholar

  6. Na Jiang
    View author publications

    Search author on:PubMed Google Scholar

  7. Jianqiang Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Jingnan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  9. Zhenlong Wang
    View author publications

    Search author on:PubMed Google Scholar

  10. Laixin Luo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K.B. conceived and designed the research, performed the experiments, analyzed and interpreted the data, and wrote the manuscript. X.X. performed the experiments, analyzed and interpreted the data, and wrote the manuscript. C.Y. and H.Y. helped carry out the experiments. M.L. analyzed the data. N.J. and J.L. designed the research. J.Z. and Z.W. revised the manuscript. L.L. conceived and designed the research and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kaihong Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplemental information

Supplemental Data S1

Supplemental Data S2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, K., Xu, X., Yu, C. et al. The ppGpp-HpaR1-gum regulatory pathway modulates exopolysaccharides production in Xanthomonas campestris pv. campestris. npj Biofilms Microbiomes (2026). https://doi.org/10.1038/s41522-026-00926-8

Download citation

  • Received: 26 August 2025

  • Accepted: 24 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s41522-026-00926-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Content types
  • Journal Information
  • About the Editors
  • Open Access
  • Contact
  • Calls for Papers
  • Article Processing Charges
  • Editorial policies
  • Journal Metrics
  • About the Partner

Publish with us

  • For Authors and Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

npj Biofilms and Microbiomes (npj Biofilms Microbiomes)

ISSN 2055-5008 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology